Bożyk Łukasz, Derbisz Jan, Krawczyk Tomasz, Novotná Jana, Okrasa Karolina
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków, Kraków, Poland.
Algorithmica. 2022;84(8):2271-2291. doi: 10.1007/s00453-021-00923-7. Epub 2022 Feb 1.
A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines and , one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given -vertex graph, whether we can remove at most vertices to obtain a bipartite permutation graph. This problem is -complete by the classical result of Lewis and Yannakakis [20]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time , and also give a polynomial-time 9-approximation algorithm.
排列图可以定义为端点位于两条平行线(L_1)和(L_2)上的线段的交图,每条线上各有一个端点。二分排列图是一种二分图的排列图。在本文中,我们研究二分排列顶点删除问题的参数化复杂度,该问题询问对于给定的(n)顶点图,是否可以删除至多(k)个顶点以获得二分排列图。根据Lewis和Yannakakis [20]的经典结果,这个问题是NP完全的。我们分析了所谓的几乎二分排列图的结构,与二分排列图不同,这种图可能包含洞(大的诱导圈)。我们利用这种图中最短洞的结构性质。利用它来获得一个运行时间为(2^{O(k^2)}n^O(1))的二分排列顶点删除问题的算法,并且还给出了一个多项式时间的9近似算法。