Nederlof Jesper, Swennenhuis Céline M F
Algorithms and Complexity Group, Utrecht University, Utrecht, Netherlands.
Combinatorial Optimization Group, Eindhoven University of Technology, Eindhoven, Netherlands.
Algorithmica. 2022;84(8):2309-2334. doi: 10.1007/s00453-022-00970-8. Epub 2022 May 7.
We study a natural variant of scheduling that we call : in this variant an instance of a scheduling problem along with an integer is given and one seeks an optimal schedule where not all, but only jobs, have to be processed. Specifically, we aim to determine the fine-grained parameterized complexity of partial scheduling problems parameterized by for all variants of scheduling problems that minimize the makespan and involve unit/arbitrary processing times, identical/unrelated parallel machines, release/due dates, and precedence constraints. That is, we investigate whether algorithms with runtimes of the type or exist for a function that is as small as possible. Our contribution is two-fold: First, we categorize each variant to be either in , -complete and fixed-parameter tractable by , or -hard parameterized by . Second, for many interesting cases we further investigate the runtime on a finer scale and obtain run times that are (almost) optimal assuming the Exponential Time Hypothesis. As one of our main technical contributions, we give an time algorithm to solve instances of partial scheduling problems minimizing the makespan with unit length jobs, precedence constraints and release dates, where is the graph with precedence constraints.
我们研究了一种调度的自然变体,我们称之为:在这种变体中,给出了一个调度问题的实例以及一个整数,并且要寻找一个最优调度,其中并非所有作业,而只有(k)个作业需要被处理。具体而言,对于所有最小化完工时间且涉及单位/任意处理时间、相同/无关并行机器、发布/截止日期以及优先级约束的调度问题变体,我们旨在确定以(k)为参数的部分调度问题的细粒度参数化复杂度。也就是说,我们研究对于尽可能小的函数(f),是否存在运行时间为(f(k) \cdot n^{O(1)})或(2^{O(k)} \cdot n^{O(1)})类型的算法。我们的贡献有两方面:第一,我们将每个变体分类为属于(FPT)、(W[1])-完全且由(k)固定参数可处理,或者由(k)参数化是(W[1])-难的。第二,对于许多有趣的情况,我们在更精细的尺度上进一步研究运行时间,并在假设指数时间假设的情况下获得(几乎)最优的运行时间。作为我们的主要技术贡献之一,我们给出了一个(O^*(2^{\omega(G)}))时间算法来解决部分调度问题的实例,该问题最小化具有单位长度作业、优先级约束和发布日期的完工时间,其中(G)是具有优先级约束的图。