Sun Haibin, Wang Wenjie, Zeng Lianduan, Liu Congcong, Liang Shuangshuang, Xie Wenhe, Gao Shasha, Liu Shenghong, Wang Xiao
Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China.
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Dalton Trans. 2022 Aug 16;51(32):12071-12079. doi: 10.1039/d2dt01951e.
The ingenious design of high-performance tin-based lithium-ion batteries (LIBs) is challenging due to their poor conductivity and drastic volume change during continuous lithiation/delithiation cycles. Herein, we present a strategy to confine heterostructured SnSe-SnO nanoparticles into macroscopic nitrogen-doped carbon microbelts (SnSe-SnO@NC) as anode materials for LIBs. The composites exhibit an excellent specific capacity of 436.3 mA h g even at 20 A g and an ultrastable specific capacity of 632.7 mA h g after 2800 cycles at 5 A g. Density Functional Theory (DFT) calculations reveal that metallic SnSe-SnO heterostructures endow the lithium atoms at the interface with high adsorption energy, which promotes the anchoring of Li atoms, and enhances the electrical conductivity of the anode materials. This demonstrates the superior Li storage performance of the SnSe-SnO@NC microbelts as anode materials.
高性能锡基锂离子电池(LIBs)的巧妙设计颇具挑战性,因为其导电性差,且在连续的锂化/脱锂循环过程中会发生剧烈的体积变化。在此,我们提出一种策略,将异质结构的SnSe-SnO纳米颗粒限制在宏观的氮掺杂碳微带(SnSe-SnO@NC)中,作为LIBs的负极材料。即使在20 A g的电流密度下,该复合材料仍表现出436.3 mA h g的优异比容量,在5 A g的电流密度下经过2800次循环后,比容量高达632.7 mA h g,具有超高的稳定性。密度泛函理论(DFT)计算表明,金属性的SnSe-SnO异质结构使界面处的锂原子具有高吸附能,这促进了锂原子的锚定,并提高了负极材料的电导率。这证明了SnSe-SnO@NC微带作为负极材料具有卓越的锂存储性能。