LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
J Chem Inf Model. 2022 Aug 8;62(15):3638-3650. doi: 10.1021/acs.jcim.2c00691. Epub 2022 Jul 26.
We assessed enzyme:substrate conformational dynamics and the rate-limiting glycosylation step of a human pancreatic α-amylase:maltopentose complex. Microsecond molecular dynamics simulations suggested that the distance of the catalytic Asp197 nucleophile to the anomeric carbon of the buried glucoside is responsible for most of the enzyme active site fluctuations and that both Asp197 and Asp300 interact the most with the buried glucoside unit. The buried glucoside binds either in a chair or skew conformations, both of which can change to TS-like conformations characteristic of retaining glucosidases. Starting from four distinct enzyme:substrate complexes, umbrella sampling quantum mechanics/molecular mechanics simulations (converged within less than 1 kcal·mol within a total simulation time of 1.6 ns) indicated that the reaction occurrs with a Gibbs barrier of 13.9 kcal·mol , in one asynchronous concerted step encompassing an acid-base reaction with Glu233 followed by a loose S2-like nucleophilic substitution by the Asp197. The transition state is characterized by a half-chair conformation of the buried glucoside that quickly changes to the envelope conformation preceding the attack of the anomeric carbon by the Asp197 nucleophile. Thermodynamic analysis of the reaction supported that a water molecule tightly hydrogen bonded to the glycosidic oxygen of the substrate at the reactant state (∼1.6 Å) forms a short hydrogen bond with Glu233 at the transition state (∼1.7 Å) and lowers the Gibbs barrier in over 5 kcal·mol. The resulting Asp197-glycosyl was mostly found in the conformation, although the more endergonic conformation was also observed. Altogether, the combination of short distances for the acid-base reaction with the Glu233 and for the nucleophilic attack by the Asp197 nucleophile and the availability of water within hydrogen bonding distance of the glycosidic oxygen provides a reliable criteria to identify reactive conformations of α-amylase complexes.
我们评估了人胰腺α-淀粉酶:麦芽五糖复合物的酶:底物构象动力学和限速糖化步骤。微秒分子动力学模拟表明,催化 Asp197亲核试剂与埋藏的糖苷的端基碳原子之间的距离负责大多数酶活性位点的波动,并且 Asp197 和 Asp300 与埋藏的糖苷单元相互作用最多。埋藏的糖苷以椅式或扭曲构象结合,两者都可以转变为保留糖苷酶特有的 TS 样构象。从四个不同的酶:底物复合物开始,伞状取样量子力学/分子力学模拟(在不到 1 kcal·mol 的总模拟时间内收敛,总共 1.6 ns)表明,反应以 13.9 kcal·mol 的吉布斯势垒发生,在一个异步协同步骤中,包括 Glu233 的酸碱反应,然后是 Asp197 的松散 S2 样亲核取代。过渡态的特征是埋藏的糖苷的半椅式构象,在 Asp197 亲核试剂攻击端基碳原子之前,迅速转变为信封构象。反应的热力学分析支持在反应物状态下(约 1.6 Å)与底物的糖苷氧强氢键合的水分子在过渡态下(约 1.7 Å)与 Glu233 形成短氢键,并降低吉布斯势垒超过 5 kcal·mol。得到的 Asp197-糖苷基主要存在于 构象中,尽管也观察到了更吸热的 构象。总之,酸-碱反应与 Glu233 以及 Asp197 亲核试剂的亲核攻击之间的短距离以及糖苷氧氢键合距离内水分子的可用性为识别α-淀粉酶复合物的反应性构象提供了可靠的标准。