Department of Chemistry, Indian Institute of Technology Kharagpur , Kharagpur 721302, India.
J Phys Chem B. 2017 Jul 27;121(29):7075-7085. doi: 10.1021/acs.jpcb.7b04431. Epub 2017 Jul 14.
The mechanism of the catalytic hydrolysis of N-succinyl diaminopimelic acid (SDAP) by the microbial enzyme DapE in its wild-type (wt) form as well as three of its mutants (E134D, H67A, and H349A) is investigated employing a hybrid quantum mechanics/molecular mechanics (QM/MM) method coupled with molecular dynamics (MD) simulations, wherein the time evolution of the atoms of the QM and MM regions are obtained from the forces acting on the individual atoms. The free-energy profiles along the reaction coordinates of this multistep hydrolysis reaction process are explored using a combination of equilibrium and nonequilibrium (umbrella sampling) QM/MM-MD simulation techniques. In the enzyme-substrate complexes of wt-DapE and the E134D mutant, nucleophilic attack is found to be the rate-determining step involving a barrier of 15.3 and 21.5 kcal/mol, respectively, which satisfactorily explains the free energy of activation obtained from kinetic experiments in wt-DapE-SDAP (15.2 kcal/mol) and the 3 orders of magnitude decrease in the catalytic activity due to E134D mutation. The catalysis is found to be quenched in the H67A and H349A mutants of DapE due to conformational rearrangement in the active site induced by the absence of the active site His residues that prohibits activation of the catalytic water molecule.
采用混合量子力学/分子力学 (QM/MM) 方法结合分子动力学 (MD) 模拟,研究了微生物酶 DapE 在其野生型 (wt) 形式以及其三个突变体 (E134D、H67A 和 H349A) 中催化水解 N-琥珀酰二氨基庚二酸 (SDAP) 的机制,其中 QM 和 MM 区域的原子的时间演化是通过作用在各个原子上的力获得的。通过平衡和非平衡(伞状采样)QM/MM-MD 模拟技术的组合,探索了该多步水解反应过程沿反应坐标的自由能曲线。在 wt-DapE 和 E134D 突变体的酶-底物复合物中,亲核攻击被发现是速率决定步骤,涉及 15.3 和 21.5 kcal/mol 的势垒,这很好地解释了从 wt-DapE-SDAP 的动力学实验中获得的活化自由能(15.2 kcal/mol)和由于 E134D 突变导致催化活性降低 3 个数量级。由于缺乏活性位点 His 残基,导致活性位点构象重排,抑制催化水分子的活化,因此在 DapE 的 H67A 和 H349A 突变体中发现催化作用被猝灭。