Suppr超能文献

开发一种自然语言处理算法,从电子健康记录中提取癫痫发作类型和频率。

Development of a natural language processing algorithm to extract seizure types and frequencies from the electronic health record.

机构信息

Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurological Sciences, University of Vermont Medical Center, Burlington, VT, United States.

Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Seizure. 2022 Oct;101:48-51. doi: 10.1016/j.seizure.2022.07.010. Epub 2022 Jul 20.

Abstract

OBJECTIVE

To develop a natural language processing (NLP) algorithm to abstract seizure types and frequencies from electronic health records (EHR).

BACKGROUND

Seizure frequency measurement is an epilepsy quality metric. Yet, abstraction of seizure frequency from the EHR is laborious. We present an NLP algorithm to extract seizure data from unstructured text of clinic notes. Algorithm performance was assessed at two epilepsy centers.

METHODS

We developed a rules-based NLP algorithm to recognize terms related to seizures and frequency within the text of an outpatient encounter. Algorithm output (e.g. number of seizures of a particular type within a time interval) was compared to seizure data manually annotated by two expert reviewers ("gold standard"). The algorithm was developed from 150 clinic notes from institution #1 (development set), then tested on a separate set of 219 notes from institution #1 (internal test set) with 248 unique seizure frequency elements. The algorithm was separately applied to 100 notes from institution #2 (external test set) with 124 unique seizure frequency elements. Algorithm performance was measured by recall (sensitivity), precision (positive predictive value), and F1 score (geometric mean of precision and recall).

RESULTS

In the internal test set, the algorithm demonstrated 70% recall (173/248), 95% precision (173/182), and 0.82 F1 score compared to manual review. Algorithm performance in the external test set was lower with 22% recall (27/124), 73% precision (27/37), and 0.40 F1 score.

CONCLUSIONS

These results suggest NLP extraction of seizure types and frequencies is feasible, though not without challenges in generalizability for large-scale implementation.

摘要

目的

开发一种自然语言处理(NLP)算法,从电子健康记录(EHR)中提取发作类型和频率。

背景

发作频率测量是癫痫质量指标。然而,从 EHR 中提取发作频率是很费力的。我们提出了一种 NLP 算法,从诊所记录的非结构化文本中提取发作数据。在两个癫痫中心评估了算法性能。

方法

我们开发了一种基于规则的 NLP 算法,以识别门诊就诊记录文本中与发作和频率相关的术语。算法输出(例如,特定类型的发作在时间间隔内的次数)与由两位专家审阅员手动标记的发作数据(“黄金标准”)进行比较。该算法是从机构 #1 的 150 份诊所记录中开发的(开发集),然后在机构 #1 的另一个 219 份记录(内部测试集)上进行测试,其中有 248 个独特的发作频率元素。该算法分别应用于机构 #2 的 100 份记录(外部测试集),其中有 124 个独特的发作频率元素。通过召回率(敏感性)、精度(阳性预测值)和 F1 分数(精度和召回率的几何平均值)来衡量算法性能。

结果

在内部测试集中,与手动审查相比,该算法的召回率为 70%(173/248),精度为 95%(173/182),F1 得分为 0.82。在外部测试集中,算法性能较低,召回率为 22%(27/124),精度为 73%(27/37),F1 得分为 0.40。

结论

这些结果表明,从自然语言处理中提取发作类型和频率是可行的,但在大规模实施方面仍存在通用性挑战。

相似文献

2
Long-term epilepsy outcome dynamics revealed by natural language processing of clinic notes.
Epilepsia. 2023 Jul;64(7):1900-1909. doi: 10.1111/epi.17633. Epub 2023 May 10.
4
Identification of pancreatic cancer risk factors from clinical notes using natural language processing.
Pancreatology. 2024 Jun;24(4):572-578. doi: 10.1016/j.pan.2024.03.016. Epub 2024 Mar 26.
6
Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Knee Arthroplasty.
J Arthroplasty. 2021 Mar;36(3):922-926. doi: 10.1016/j.arth.2020.09.029. Epub 2020 Oct 10.
7
Extracting seizure control metrics from clinic notes of patients with epilepsy: A natural language processing approach.
Epilepsy Res. 2024 Nov;207:107451. doi: 10.1016/j.eplepsyres.2024.107451. Epub 2024 Sep 10.
8
Using natural language processing to identify opioid use disorder in electronic health record data.
Int J Med Inform. 2023 Feb;170:104963. doi: 10.1016/j.ijmedinf.2022.104963. Epub 2022 Dec 10.
10
Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing.
J Am Med Inform Assoc. 2022 Apr 13;29(5):873-881. doi: 10.1093/jamia/ocac018.

引用本文的文献

1
Clinical applications of large language models in medicine and surgery: A scoping review.
J Int Med Res. 2025 Jul;53(7):3000605251347556. doi: 10.1177/03000605251347556. Epub 2025 Jul 4.
2
5
Annotation of epilepsy clinic letters for natural language processing.
J Biomed Semantics. 2024 Sep 15;15(1):17. doi: 10.1186/s13326-024-00316-z.
6
Extracting seizure control metrics from clinic notes of patients with epilepsy: A natural language processing approach.
Epilepsy Res. 2024 Nov;207:107451. doi: 10.1016/j.eplepsyres.2024.107451. Epub 2024 Sep 10.
7
Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist.
Curr Neurol Neurosci Rep. 2023 Dec;23(12):869-879. doi: 10.1007/s11910-023-01318-7. Epub 2023 Dec 7.
8
Artificial intelligence in epilepsy phenotyping.
Epilepsia. 2023 Nov 20. doi: 10.1111/epi.17833.
9
Generalization of finetuned transformer language models to new clinical contexts.
JAMIA Open. 2023 Aug 16;6(3):ooad070. doi: 10.1093/jamiaopen/ooad070. eCollection 2023 Oct.
10
Long-term epilepsy outcome dynamics revealed by natural language processing of clinic notes.
Epilepsia. 2023 Jul;64(7):1900-1909. doi: 10.1111/epi.17633. Epub 2023 May 10.

本文引用的文献

1
Seizure Frequency Process and Outcome Quality Measures: Quality Improvement in Neurology.
Neurology. 2022 Apr 5;98(14):583-590. doi: 10.1212/WNL.0000000000200239.
2
Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing.
J Am Med Inform Assoc. 2022 Apr 13;29(5):873-881. doi: 10.1093/jamia/ocac018.
3
Efficacy and Tolerability of Clobazam in Adults With Drug-Refractory Epilepsy.
Neurol Clin Pract. 2021 Oct;11(5):e669-e676. doi: 10.1212/CPJ.0000000000000992.
4
Can antiepileptic efficacy and epilepsy variables be studied from electronic health records? A review of current approaches.
Seizure. 2021 Feb;85:138-144. doi: 10.1016/j.seizure.2020.11.011. Epub 2021 Jan 13.
6
Quality improvement in neurology: Epilepsy Quality Measurement Set 2017 update.
Neurology. 2018 Oct 30;91(18):829-836. doi: 10.1212/WNL.0000000000006425. Epub 2018 Oct 3.
7
Instruction manual for the ILAE 2017 operational classification of seizure types.
Epilepsia. 2017 Apr;58(4):531-542. doi: 10.1111/epi.13671. Epub 2017 Mar 8.
8
Seizure frequency and patient-centered outcome assessment in epilepsy.
Epilepsia. 2014 Aug;55(8):1205-12. doi: 10.1111/epi.12672. Epub 2014 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验