Suppr超能文献

人工智能在癫痫表型分析中的应用

Artificial intelligence in epilepsy phenotyping.

作者信息

Knight Andrew, Gschwind Tilo, Galer Peter, Worrell Gregory A, Litt Brian, Soltesz Ivan, Beniczky Sándor

机构信息

Neuro Event Labs, Tampere University, Tampere, Finland.

Department of Neurosurgery, Stanford University, Stanford, California, USA.

出版信息

Epilepsia. 2023 Nov 20. doi: 10.1111/epi.17833.

Abstract

Artificial intelligence (AI) allows data analysis and integration at an unprecedented granularity and scale. Here we review the technological advances, challenges, and future perspectives of using AI for electro-clinical phenotyping of animal models and patients with epilepsy. In translational research, AI models accurately identify behavioral states in animal models of epilepsy, allowing identification of correlations between neural activity and interictal and ictal behavior. Clinical applications of AI-based automated and semi-automated analysis of audio and video recordings of people with epilepsy, allow significant data reduction and reliable detection and classification of major motor seizures. AI models can accurately identify electrographic biomarkers of epilepsy, such as spikes, high-frequency oscillations, and seizure patterns. Integrating AI analysis of electroencephalographic, clinical, and behavioral data will contribute to optimizing therapy for patients with epilepsy.

摘要

人工智能(AI)能够以前所未有的粒度和规模进行数据分析与整合。在此,我们回顾了将AI用于癫痫动物模型和患者的电临床表型分析的技术进展、挑战及未来前景。在转化研究中,AI模型可准确识别癫痫动物模型中的行为状态,从而确定神经活动与发作间期及发作期行为之间的相关性。基于AI的癫痫患者音频和视频记录的自动化及半自动化分析的临床应用,可大幅减少数据量,并可靠地检测和分类主要运动性癫痫发作。AI模型能够准确识别癫痫的脑电图生物标志物,如棘波、高频振荡和癫痫发作模式。整合脑电图、临床和行为数据的AI分析将有助于优化癫痫患者的治疗。

相似文献

引用本文的文献

本文引用的文献

9
Hidden behavioral fingerprints in epilepsy.癫痫的隐匿行为特征。
Neuron. 2023 May 3;111(9):1440-1452.e5. doi: 10.1016/j.neuron.2023.02.003. Epub 2023 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验