Department of Physics, University of South Florida, Tampa, FL 33620, USA.
Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
Cells. 2022 Jul 11;11(14):2167. doi: 10.3390/cells11142167.
Neurotransmitter release from presynaptic terminals is primarily regulated by rapid Ca influx through membrane-resident voltage-gated Ca channels (VGCCs). Moreover, accumulating evidence indicates that the endoplasmic reticulum (ER) is extensively present in axonal terminals of neurons and plays a modulatory role in synaptic transmission by regulating Ca levels. Familial Alzheimer's disease (FAD) is marked by enhanced Ca release from the ER and downregulation of Ca buffering proteins. However, the precise consequence of impaired Ca signaling within the vicinity of VGCCs (active zone (AZ)) on exocytosis is poorly understood. Here, we perform in silico experiments of intracellular Ca signaling and exocytosis in a detailed biophysical model of hippocampal synapses to investigate the effect of aberrant Ca signaling on neurotransmitter release in FAD. Our model predicts that enhanced Ca release from the ER increases the probability of neurotransmitter release in FAD. Moreover, over very short timescales (30-60 ms), the model exhibits activity-dependent and enhanced short-term plasticity in FAD, indicating neuronal hyperactivity-a hallmark of the disease. Similar to previous observations in AD animal models, our model reveals that during prolonged stimulation (~450 ms), pathological Ca signaling increases depression and desynchronization with stimulus, causing affected synapses to operate unreliably. Overall, our work provides direct evidence in support of a crucial role played by altered Ca homeostasis mediated by intracellular stores in FAD.
神经递质从突触前末梢释放主要受膜驻留电压门控钙通道 (VGCCs) 介导的快速 Ca 内流调节。此外,越来越多的证据表明内质网 (ER) 广泛存在于神经元的轴突末梢,并通过调节 Ca 水平在突触传递中发挥调节作用。家族性阿尔茨海默病 (FAD) 的特征是 ER 中 Ca 释放增强和 Ca 缓冲蛋白下调。然而,VGCCs 附近 (活性区 (AZ)) 内 Ca 信号受损对胞吐作用的确切影响仍知之甚少。在这里,我们在海马突触的详细生物物理模型中进行了细胞内 Ca 信号和胞吐作用的计算机模拟实验,以研究异常 Ca 信号对 FAD 中神经递质释放的影响。我们的模型预测,ER 中 Ca 释放增强会增加 FAD 中神经递质释放的概率。此外,在非常短的时间尺度 (30-60ms) 内,模型表现出 FAD 中的活动依赖性和增强的短期可塑性,表明神经元过度活跃-这是该疾病的标志。与 AD 动物模型中的先前观察结果类似,我们的模型表明,在长时间刺激 (~450ms) 期间,病理性 Ca 信号会增加抑郁和与刺激的失步,导致受影响的突触无法可靠地运行。总的来说,我们的工作提供了直接证据,支持由细胞内储存介导的 Ca 动态平衡改变在 FAD 中发挥关键作用。