Lam Luu Ho Thanh, Chu Ngan Thy, Tran Thi-Oanh, Do Duyen Thi, Le Nguyen Quoc Khanh
International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
Children's Hospital 2, Ho Chi Minh City 70000, Vietnam.
Cancers (Basel). 2022 Jul 18;14(14):3492. doi: 10.3390/cancers14143492.
Glioma is a Center Nervous System (CNS) neoplasm that arises from the glial cells. In a new scheme category of the World Health Organization 2016, lower-grade gliomas (LGGs) are grade II and III gliomas. Following the discovery of suppression of negative immune regulation, immunotherapy is a promising effective treatment method for lower-grade glioma patients. However, the therapy is not effective for all types of LGGs, and tumor mutational burden (TMB) has been shown to be a potential biomarker for the susceptibility and prognosis of immunotherapy in lower-grade glioma patients. Hence, predicting TMB benefits brain cancer patients. In this study, we investigated the correlation between MRI (magnetic resonance imaging)-based radiomic features and TMB in LGG by applying machine learning methods. Six machine learning classifiers were examined on the features extracted from the genetic algorithm. Subsequently, a light gradient boosting machine (LightGBM) succeeded in selecting 11 radiomics signatures for TMB classification. Our LightGBM model resulted in high accuracy of 0.7936, and reached a balance between sensitivity and specificity, achieving 0.76 and 0.8107, respectively. To our knowledge, our study represents the best model for classification of TMB in LGG patients at present.
胶质瘤是一种起源于神经胶质细胞的中枢神经系统(CNS)肿瘤。在世界卫生组织2016年的新分类方案中,低级别胶质瘤(LGG)为二级和三级胶质瘤。随着负性免疫调节抑制作用的发现,免疫疗法成为低级别胶质瘤患者一种有前景的有效治疗方法。然而,该疗法并非对所有类型的LGG都有效,肿瘤突变负荷(TMB)已被证明是低级别胶质瘤患者免疫治疗敏感性和预后的潜在生物标志物。因此,预测TMB对脑癌患者有益。在本研究中,我们通过应用机器学习方法研究了基于磁共振成像(MRI)的放射组学特征与LGG中TMB之间的相关性。对从遗传算法中提取的特征检验了六种机器学习分类器。随后,一个轻量级梯度提升机(LightGBM)成功地选择了11个用于TMB分类的放射组学特征。我们的LightGBM模型准确率高达0.7936,在敏感性和特异性之间达到了平衡,分别为0.76和0.8107。据我们所知,我们的研究代表了目前LGG患者中TMB分类的最佳模型。