Delgado-Ortet Maria, Molina Angel, Alférez Santiago, Rodellar José, Merino Anna
Core Laboratory, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain.
Applied Mathematics and Computer Science, School of Engineering, Science and Technology, Universidad del Rosario, Bogotá 111711, Colombia.
Entropy (Basel). 2020 Jun 13;22(6):657. doi: 10.3390/e22060657.
Malaria is an endemic life-threating disease caused by the unicellular protozoan parasites of the genus . Confirming the presence of parasites early in all malaria cases ensures species-specific antimalarial treatment, reducing the mortality rate, and points to other illnesses in negative cases. However, the gold standard remains the light microscopy of May-Grünwald-Giemsa (MGG)-stained thin and thick peripheral blood (PB) films. This is a time-consuming procedure, dependent on a pathologist's skills, meaning that healthcare providers may encounter difficulty in diagnosing malaria in places where it is not endemic. This work presents a novel three-stage pipeline to (1) segment erythrocytes, (2) crop and mask them, and (3) classify them into malaria infected or not. The first and third steps involved the design, training, validation and testing of a Segmentation Neural Network and a Convolutional Neural Network from scratch using a Graphic Processing Unit. Segmentation achieved a global accuracy of 93.72% over the test set and the specificity for malaria detection in red blood cells (RBCs) was 87.04%. This work shows the potential that deep learning has in the digital pathology field and opens the way for future improvements, as well as for broadening the use of the created networks.
疟疾是一种由疟原虫属单细胞原生动物寄生虫引起的地方性威胁生命的疾病。在所有疟疾病例中尽早确认寄生虫的存在,可确保进行针对特定物种的抗疟治疗,降低死亡率,并在阴性病例中指向其他疾病。然而,金标准仍然是对经May-Grünwald-Giemsa(MGG)染色的外周血薄血膜和厚血膜进行光学显微镜检查。这是一个耗时的过程,依赖于病理学家的技能,这意味着医疗服务提供者在非疟疾流行地区诊断疟疾时可能会遇到困难。这项工作提出了一种新颖的三阶段流程,用于(1)分割红细胞,(2)裁剪并掩膜红细胞,以及(3)将它们分类为是否感染疟疾。第一步和第三步涉及使用图形处理单元从头开始设计、训练、验证和测试分割神经网络和卷积神经网络。分割在测试集上实现了93.72%的全局准确率,红细胞中疟疾检测的特异性为87.04%。这项工作展示了深度学习在数字病理学领域的潜力,并为未来的改进以及扩大所创建网络的使用开辟了道路。