Suppr超能文献

智能家居中基于机器视觉的膳食营养信息自主感知方法

Dietary Nutritional Information Autonomous Perception Method Based on Machine Vision in Smart Homes.

作者信息

Li Hongyang, Yang Guanci

机构信息

Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China.

Key Laboratory of "Internet+" Collaborative Intelligent Manufacturing in Guizhou Province, Guiyang 550025, China.

出版信息

Entropy (Basel). 2022 Jun 24;24(7):868. doi: 10.3390/e24070868.

Abstract

In order to automatically perceive the user's dietary nutritional information in the smart home environment, this paper proposes a dietary nutritional information autonomous perception method based on machine vision in smart homes. Firstly, we proposed a food-recognition algorithm based on YOLOv5 to monitor the user's dietary intake using the social robot. Secondly, in order to obtain the nutritional composition of the user's dietary intake, we calibrated the weight of food ingredients and designed the method for the calculation of food nutritional composition; then, we proposed a dietary nutritional information autonomous perception method based on machine vision (DNPM) that supports the quantitative analysis of nutritional composition. Finally, the proposed algorithm was tested on the self-expanded dataset CFNet-34 based on the Chinese food dataset ChineseFoodNet. The test results show that the average recognition accuracy of the food-recognition algorithm based on YOLOv5 is 89.7%, showing good accuracy and robustness. According to the performance test results of the dietary nutritional information autonomous perception system in smart homes, the average nutritional composition perception accuracy of the system was 90.1%, the response time was less than 6 ms, and the speed was higher than 18 fps, showing excellent robustness and nutritional composition perception performance.

摘要

为了在智能家居环境中自动感知用户的饮食营养信息,本文提出了一种基于智能家居机器视觉的饮食营养信息自主感知方法。首先,我们提出了一种基于YOLOv5的食物识别算法,利用社交机器人监测用户的饮食摄入量。其次,为了获取用户饮食摄入的营养成分,我们对食物成分的重量进行了校准,并设计了食物营养成分的计算方法;然后,我们提出了一种基于机器视觉的饮食营养信息自主感知方法(DNPM),该方法支持对营养成分进行定量分析。最后,基于中国食物数据集ChineseFoodNet在自行扩展的数据集CFNet-34上对所提出的算法进行了测试。测试结果表明,基于YOLOv5的食物识别算法的平均识别准确率为89.7%,具有良好的准确性和鲁棒性。根据智能家居中饮食营养信息自主感知系统的性能测试结果,该系统的平均营养成分感知准确率为90.1%,响应时间小于6毫秒,速度高于18帧/秒,具有出色的鲁棒性和营养成分感知性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f07d/9324181/40211f97fa35/entropy-24-00868-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验