Suppr超能文献

基于生成对抗网络的社交机器人人脸去识别方法

FPGAN: Face de-identification method with generative adversarial networks for social robots.

机构信息

Key Lab. of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Guiyang, China.

Key Lab. of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Guiyang, China; College of mechanical engineering, Guizhou University, Guiyang, China; State Key Laboratory of Public Big Data, Guizhou University, Guiyang, China.

出版信息

Neural Netw. 2021 Jan;133:132-147. doi: 10.1016/j.neunet.2020.09.001. Epub 2020 Sep 20.

Abstract

In this paper, we propose a new face de-identification method based on generative adversarial network (GAN) to protect visual facial privacy, which is an end-to-end method (herein, FPGAN). First, we propose FPGAN and mathematically prove its convergence. Then, a generator with an improved U-Net is used to enhance the quality of the generated image, and two discriminators with a seven-layer network architecture are designed to strengthen the feature extraction ability of FPGAN. Subsequently, we propose the pixel loss, content loss, adversarial loss functions and optimization strategy to guarantee the performance of FPGAN. In our experiments, we applied FPGAN to face de-identification in social robots and analyzed the related conditions that could affect the model. Moreover, we proposed a new face de-identification evaluation protocol to check the performance of the model. This protocol can be used for the evaluation of face de-identification and privacy protection. Finally, we tested our model and four other methods on the CelebA, MORPH, RaFD, and FBDe datasets. The results of the experiments show that FPGAN outperforms the baseline methods.

摘要

在本文中,我们提出了一种基于生成对抗网络(GAN)的新的人脸去识别方法,用于保护视觉面部隐私,这是一种端到端的方法(即 FPGAN)。首先,我们提出了 FPGAN,并从数学上证明了它的收敛性。然后,使用具有改进的 U-Net 的生成器来提高生成图像的质量,并设计了两个具有七层网络架构的鉴别器,以增强 FPGAN 的特征提取能力。随后,我们提出了像素损失、内容损失、对抗损失函数和优化策略,以保证 FPGAN 的性能。在我们的实验中,我们将 FPGAN 应用于社交机器人的人脸去识别,并分析了可能影响模型的相关条件。此外,我们提出了一种新的人脸去识别评估协议,以检查模型的性能。该协议可用于人脸去识别和隐私保护的评估。最后,我们在 CelebA、MORPH、RaFD 和 FBDe 数据集上测试了我们的模型和其他四种方法。实验结果表明,FPGAN 优于基线方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验