Khan Muhammad Salman, Samreen Maria, Khan Muhammad Asif, De la Sen Manuel
Department of Mathematics, Quaid-I-Azam University, Islamabad 44230, Pakistan.
Department of Mathematics, Kahota-Haveli Campus, University of the Poonch Rawalakot, Rawalakot 12350, Pakistan.
Entropy (Basel). 2022 Jul 7;24(7):949. doi: 10.3390/e24070949.
This manuscript deals with the qualitative study of certain properties of an immunogenic tumors model. Mainly, we obtain a dynamically consistent discrete-time immunogenic tumors model using a nonstandard difference scheme. The existence of fixed points and their stability are discussed. It is shown that a continuous system experiences Hopf bifurcation at one and only one positive fixed point, whereas its discrete-time counterpart experiences Neimark-Sacker bifurcation at one and only one positive fixed point. It is shown that there is no chance of period-doubling bifurcation in our discrete-time system. Additionally, numerical simulations are carried out in support of our theoretical discussion.
本文探讨了一种免疫原性肿瘤模型某些性质的定性研究。主要地,我们使用一种非标准差分格式获得了一个动态一致的离散时间免疫原性肿瘤模型。讨论了不动点的存在性及其稳定性。结果表明,一个连续系统在唯一一个正不动点处经历霍普夫分岔,而其离散时间对应系统在唯一一个正不动点处经历奈马克 - 萨克分岔。结果表明,在我们的离散时间系统中不存在倍周期分岔的情况。此外,进行了数值模拟以支持我们的理论讨论。