Department of Mathematics, Quaid-I-Azam University Islamabad, Islamabad, 44230, Pakistan.
Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan.
J Math Biol. 2022 Sep 19;85(4):34. doi: 10.1007/s00285-022-01809-0.
The coexistence of plant-herbivore populations in an ecological system is a fundamental topic of research in mathematical ecology. Plant-herbivore interactions are often described by using discrete-time models in the case of non-overlapping generations: such generations have some specific time interval of life and their old generations are replaced by new generations after some regular interval of time. Keeping in mind the dynamical reliability of continuous-time models we presented two discrete-time plant-herbivore models. Mainly, by applying Euler's forward method a discrete-time plant-herbivore model is obtained from a continuous-time plant-herbivore model. In addition, a dynamically consistent discrete-time plant-herbivore model is obtained by applying a nonstandard difference scheme. Moreover, local stability is discussed and the existence of bifurcation about positive equilibrium is shown under some mathematical conditions. To control bifurcation and chaos, a modified hybrid technique is developed. Finally, to support our theocratical results and to show the dynamical reliability of the nonstandard difference scheme some numerical examples are provided.
植物-食草动物种群在生态系统中的共存是数学生态学研究的一个基本课题。在非重叠世代的情况下,植物-食草动物的相互作用通常通过使用离散时间模型来描述:这种世代具有特定的生命周期时间间隔,并且在经过一定的时间间隔后,旧世代被新世代所取代。考虑到连续时间模型的动力学可靠性,我们提出了两个离散时间植物-食草动物模型。主要是通过应用欧拉前向方法,从连续时间植物-食草动物模型得到离散时间植物-食草动物模型。此外,通过应用非标准差分格式得到了一个动态一致的离散时间植物-食草动物模型。此外,讨论了局部稳定性,并在一些数学条件下证明了正平衡点的分岔存在性。为了控制分岔和混沌,提出了一种改进的混合技术。最后,为了支持我们的理论结果,并展示非标准差分格式的动力学可靠性,提供了一些数值示例。