Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China.
Department of Statistics, Harvard University, Cambridge, MA 02138, USA.
Genes (Basel). 2022 Jul 8;13(7):1220. doi: 10.3390/genes13071220.
Openness-weighted association study (OWAS) is a method that leverages the in silico prediction of chromatin accessibility to prioritize genome-wide association studies (GWAS) signals, and can provide novel insights into the roles of non-coding variants in complex diseases. A prerequisite to apply OWAS is to choose a trait-related cell type beforehand. However, for most complex traits, the trait-relevant cell types remain elusive. In addition, many complex traits involve multiple related cell types. To address these issues, we develop OWAS-joint, an efficient framework that aggregates predicted chromatin accessibility across multiple cell types, to prioritize disease-associated genomic segments. In simulation studies, we demonstrate that OWAS-joint achieves a greater statistical power compared to OWAS. Moreover, the heritability explained by OWAS-joint segments is higher than or comparable to OWAS segments. OWAS-joint segments also have high replication rates in independent replication cohorts. Applying the method to six complex human traits, we demonstrate the advantages of OWAS-joint over a single-cell-type OWAS approach. We highlight that OWAS-joint enhances the biological interpretation of disease mechanisms, especially for non-coding regions.
开放性加权关联研究(OWAS)是一种利用计算预测染色质可及性的方法,对全基因组关联研究(GWAS)信号进行优先级排序,并为复杂疾病中非编码变异的作用提供新的见解。应用 OWAS 的前提是事先选择与特征相关的细胞类型。然而,对于大多数复杂特征,相关的特征细胞类型仍然难以捉摸。此外,许多复杂特征涉及多种相关的细胞类型。为了解决这些问题,我们开发了 OWAS-joint,这是一种有效的框架,它可以聚合多个细胞类型的预测染色质可及性,以优先考虑与疾病相关的基因组片段。在模拟研究中,我们证明了 OWAS-joint 比 OWAS 具有更高的统计功效。此外,OWAS-joint 片段解释的遗传力高于或可与 OWAS 片段相媲美。OWAS-joint 片段在独立的复制队列中也具有较高的复制率。将该方法应用于六个复杂的人类特征,我们证明了 OWAS-joint 比单细胞类型的 OWAS 方法具有优势。我们强调,OWAS-joint 增强了对疾病机制的生物学解释,特别是对非编码区域。