Kazakis George, Lagaros Nikos D
Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, 9, Heroon Polytechniou Str., Zografou Campus, GR-15780 Athens, Greece.
Materials (Basel). 2022 Jul 17;15(14):4972. doi: 10.3390/ma15144972.
The main part of the computational cost required for solving the problem of optimal material design with extreme properties using a topology optimization formulation is devoted to solving the equilibrium system of equations derived through the implementation of the finite element method (FEM). To reduce this computational cost, among other methodologies, various model order reduction (MOR) approaches can be utilized. In this work, a simple Matlab code for solving the topology optimization for the design of materials combined with three different model order reduction approaches is presented. The three MOR approaches presented in the code implementation are the proper orthogonal decomposition (POD), the on-the-fly reduced order model construction and the approximate reanalysis (AR) following the combined approximations approach. The complete code, containing all participating functions (including the changes made to the original ones), is provided.
使用拓扑优化公式求解具有极端性能的最优材料设计问题所需计算成本的主要部分,用于求解通过有限元方法(FEM)实施得出的平衡方程组。为了降低这种计算成本,在其他方法中,可以采用各种模型降阶(MOR)方法。在这项工作中,给出了一个简单的Matlab代码,用于结合三种不同的模型降阶方法求解材料设计的拓扑优化问题。代码实现中提出的三种MOR方法是本征正交分解(POD)、即时降阶模型构建以及遵循组合近似方法的近似再分析(AR)。提供了完整的代码,其中包含所有参与函数(包括对原始函数所做的更改)。