Ortiz-Ramírez Paulina, Hernández-Ochoa Beatriz, Ortega-Cuellar Daniel, González-Valdez Abigail, Martínez-Rosas Víctor, Morales-Luna Laura, Arreguin-Espinosa Roberto, Castillo-Rodríguez Rosa Angélica, Canseco-Ávila Luis Miguel, Cárdenas-Rodríguez Noemi, Pérez de la Cruz Verónica, Montiel-González Alba Mónica, Gómez-Chávez Fernando, Gómez-Manzo Saúl
Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico.
Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico.
Microorganisms. 2022 Jul 6;10(7):1359. doi: 10.3390/microorganisms10071359.
() has been proposed as the foremost risk factor for the development of gastric cancer. We found that express the enzyme glucose-6-phosphate dehydrogenase (HpG6PD), which participates in glucose metabolism via the pentose phosphate pathway. Thus, we hypothesized that if the biochemical and physicochemical characteristics of HpG6PD contrast with the host G6PD (human G6PD, HsG6PD), HpG6PD becomes a potential target for novel drugs against . In this work, we characterized the biochemical properties of the HpG6PD from the strain 29CaP and expressed the active recombinant protein, to analyze its steady-state kinetics, thermostability, and biophysical aspects. In addition, we analyzed the HpG6PD in silico structural properties to compare them with those of the HsG6PD. The optimal pH for enzyme activity was 7.5, with a T of 46.6 °C, at an optimum stability temperature of 37 °C. The apparent values calculated for G6P and NADP were 75.0 and 12.8 µM, respectively. G6P does not protect HpG6PD from trypsin digestion, but NADP does protect the enzyme from trypsin and guanidine hydrochloride (Gdn-HCl). The biochemical characterization of HpG6PD contributes to knowledge regarding metabolism and opens up the possibility of using this enzyme as a potential target for specific and efficient treatment against this pathogen; structural alignment indicates that the three-dimensional (3D) homodimer model of the G6PD protein from is different from the 3D G6PD of .
()已被认为是胃癌发生的首要风险因素。我们发现 表达葡萄糖-6-磷酸脱氢酶(HpG6PD),该酶通过磷酸戊糖途径参与葡萄糖代谢。因此,我们推测,如果HpG6PD的生化和物理化学特性与宿主G6PD(人类G6PD,HsG6PD)不同,那么HpG6PD就成为针对 新型药物的潜在靶点。在这项工作中,我们对来自 菌株29CaP的HpG6PD的生化特性进行了表征,并表达了活性重组蛋白,以分析其稳态动力学、热稳定性和生物物理方面。此外,我们通过计算机分析了HpG6PD的结构特性,以便与HsG6PD的结构特性进行比较。酶活性的最佳pH值为7.5,T为46.6℃,最佳稳定温度为37℃。计算得出的G6P和NADP的表观 值分别为75.0和12.8μM。G6P不能保护HpG6PD免受胰蛋白酶消化,但NADP可以保护该酶免受胰蛋白酶和盐酸胍(Gdn-HCl)的影响。HpG6PD的生化特性有助于了解 代谢,并为将该酶用作针对这种病原体的特异性和有效治疗的潜在靶点开辟了可能性;结构比对表明,来自 的G6PD蛋白的三维(3D)同二聚体模型与 的3D G6PD不同。