Suppr超能文献

基于胸腔生物阻抗的机器学习算法在实验性低血容量中检测心搏量减少。

Detection of a Stroke Volume Decrease by Machine-Learning Algorithms Based on Thoracic Bioimpedance in Experimental Hypovolaemia.

机构信息

Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.

Department of Electronics and Medical Signal Processing, Technical University, 10587 Berlin, Germany.

出版信息

Sensors (Basel). 2022 Jul 6;22(14):5066. doi: 10.3390/s22145066.

Abstract

Compensated shock and hypovolaemia are frequent conditions that remain clinically undetected and can quickly cause deterioration of perioperative and critically ill patients. Automated, accurate and non-invasive detection methods are needed to avoid such critical situations. In this experimental study, we aimed to create a prediction model for stroke volume index (SVI) decrease based on electrical cardiometry (EC) measurements. Transthoracic echo served as reference for SVI assessment (SVI-TTE). In 30 healthy male volunteers, central hypovolaemia was simulated using a lower body negative pressure (LBNP) chamber. A machine-learning algorithm based on variables of EC was designed. During LBNP, SVI-TTE declined consecutively, whereas the vital signs (arterial pressures and heart rate) remained within normal ranges. Compared to heart rate (AUC: 0.83 (95% CI: 0.73-0.87)) and systolic arterial pressure (AUC: 0.82 (95% CI: 0.74-0.85)), a model integrating EC variables (AUC: 0.91 (0.83-0.94)) showed a superior ability to predict a decrease in SVI-TTE ≥ 20% ( = 0.013 compared to heart rate, and = 0.002 compared to systolic blood pressure). Simulated central hypovolaemia was related to a substantial decline in SVI-TTE but only minor changes in vital signs. A model of EC variables based on machine-learning algorithms showed high predictive power to detect a relevant decrease in SVI and may provide an automated, non-invasive method to indicate hypovolaemia and compensated shock.

摘要

代偿性休克和低血容量是临床上经常未被发现的情况,它们可能迅速导致围手术期和危重症患者病情恶化。需要自动化、准确和非侵入性的检测方法来避免这种危急情况。在这项实验研究中,我们旨在创建一种基于心电图测量的每搏量指数(SVI)降低的预测模型。经胸超声心动图(TTE)作为 SVI 评估的参考(SVI-TTE)。在 30 名健康男性志愿者中,使用下体负压(LBNP)室模拟中心性低血容量。设计了一种基于心电图变量的机器学习算法。在 LBNP 期间,SVI-TTE 连续下降,而生命体征(动脉压和心率)仍在正常范围内。与心率(AUC:0.83(95%CI:0.73-0.87))和收缩压(AUC:0.82(95%CI:0.74-0.85))相比,整合心电图变量的模型(AUC:0.91(0.83-0.94))显示出更好的预测 SVI-TTE 降低≥20%的能力(=0.013 与心率相比,=0.002 与收缩压相比)。模拟的中心性低血容量与 SVI-TTE 的显著下降有关,但生命体征的变化很小。基于机器学习算法的心电图变量模型显示出很高的预测能力,可以检测到相关的 SVI 降低,并可能提供一种自动、非侵入性的方法来指示低血容量和代偿性休克。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f345/9316072/2b0c939d12e8/sensors-22-05066-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验