Suppr超能文献

基于模板更新的 Transformer 特征增强网络的目标跟踪方法。

Transformer Feature Enhancement Network with Template Update for Object Tracking.

机构信息

School of Computer Science and Engineering, Xi'an Technological University, Xi'an 710021, China.

State and Provincial Joint Engineering Laboratory of Advanced Network, Monitoring and Control, Xi'an 710021, China.

出版信息

Sensors (Basel). 2022 Jul 12;22(14):5219. doi: 10.3390/s22145219.

Abstract

This paper proposes a tracking method combining feature enhancement and template update, aiming to solve the problems of existing trackers lacking global information attention, weak feature characterization ability, and not being well adapted to the changing appearance of the target. Pre-extracted features are enhanced in context and on channels through a feature enhancement network consisting of channel attention and transformer architectures. The enhanced feature information is input into classification and regression networks to achieve the final target state estimation. At the same time, the template update strategy is introduced to update the sample template judiciously. Experimental results show that the proposed tracking method exhibits good tracking performance on the OTB100, LaSOT, and GOT-10k benchmark datasets.

摘要

本文提出了一种结合特征增强和模板更新的跟踪方法,旨在解决现有跟踪器缺乏全局信息关注、特征表示能力弱以及不能很好地适应目标外观变化的问题。通过由通道注意力和变压器结构组成的特征增强网络,对预提取的特征进行上下文和通道上的增强。增强后的特征信息被输入到分类和回归网络中,以实现最终的目标状态估计。同时,引入模板更新策略,以明智地更新样本模板。实验结果表明,所提出的跟踪方法在 OTB100、LaSOT 和 GOT-10k 基准数据集上具有良好的跟踪性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验