Dong Qian, de Jesus León-Montiel Roberto, Sun Guo-Hua, Dong Shi-Hai
Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico City 07738, Mexico.
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Mexico City 04510, Mexico.
Entropy (Basel). 2022 Jul 22;24(8):1011. doi: 10.3390/e24081011.
According to the single-mode approximation applied to two different mo des, each associated with different uniformly accelerating reference frames, we present analytical expression of the Minkowski states for both the ground and first excited states. Applying such an approximation, we study the entanglement property of Bell and Greenberger-Horne-Zeilinger (GHZ) states formed by such states. The corresponding entanglement properties are described by studying negativity and von Neumann entropy. The degree of entanglement will be degraded when the acceleration parameters increase. We find that the greater the number of particles in the entangled system, the more stable the system that is studied by the von Neumann entropy. The present results will be reduced to those in the case of the uniformly accelerating reference frame.
根据应用于两个不同模式的单模近似,每个模式都与不同的均匀加速参考系相关联,我们给出了基态和第一激发态的闵可夫斯基态的解析表达式。应用这种近似,我们研究了由这些态形成的贝尔态和格林伯格 - 霍恩 - 泽林格(GHZ)态的纠缠特性。通过研究负性和冯·诺依曼熵来描述相应的纠缠特性。当加速参数增加时,纠缠程度将会降低。我们发现,纠缠系统中的粒子数越多,用冯·诺依曼熵研究的系统就越稳定。目前的结果将简化为均匀加速参考系情况下的结果。