Suppr超能文献

利用异质扩散场限制解析金纳米立方体阵列底物诱导组装实现加速电催化效应的分子机制。

Deciphering the Molecular Mechanism of Substrate-Induced Assembly of Gold Nanocube Arrays toward an Accelerated Electrocatalytic Effect Employing Heterogeneous Diffusion Field Confinement.

作者信息

Niedzialkowski Pawel, Koterwa Adrian, Olejnik Adrian, Zielinski Artur, Gornicka Karolina, Brodowski Mateusz, Bogdanowicz Robert, Ryl Jacek

机构信息

Department of Analytic Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland.

Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.

出版信息

Langmuir. 2022 Aug 9;38(31):9597-9610. doi: 10.1021/acs.langmuir.2c01001. Epub 2022 Jul 27.

Abstract

The complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 μm, where the dominating patterns are (111) and (200) crystallographic planes. The AuNCs significantly impact the electrochemical performance of the investigated electrode [indium-tin oxide (ITO), glassy carbon (GC), and bulk gold] systems driven by surface electrons promoting the catalytic effect. Cyclic voltammetry in combination with scanning electrochemical microscopy allowed us to decipher the molecular mechanism of substrate-induced electrostatic assembly of gold nanocube arrays, revealing that the accelerated electrocatalytic effect should be attributed to the confinement of the heterogeneous diffusion fields with tremendous electrochemically active surface area variations. AuNC drop-casting at ITO, GC, and Au led to various mechanisms of heterogeneous charge transfer; only in the case of GC did the decoration significantly increase the electrochemically active surface area (EASA) and ferrocyanide redox kinetics. For ITO and Au substrates, AuNC drop-casting decreases system dimensionality rather than increasing the EASA, where Au-Au self-diffusion was also observed. Interactions of the gold, ITO, and GC surfaces with themselves and with surfactant CTAB and ferrocyanide molecules were investigated using density functional theory.

摘要

金纳米立方体(AuNCs)复杂的电催化性能是本研究的重点。AuNCs的多面形状以及电极表面的单个组装过程决定了电催化过程中不均匀的条件。形貌和电子成像显示,尺寸≤1μm的AuNC(平均38nm)组装体略呈圆形,其中主要的晶面是(111)和(200)晶面。AuNCs显著影响了由表面电子促进催化作用驱动的所研究电极[氧化铟锡(ITO)、玻碳(GC)和块状金]体系的电化学性能。循环伏安法结合扫描电化学显微镜使我们能够解读金纳米立方体阵列底物诱导静电组装的分子机制,揭示加速的电催化效应应归因于具有巨大电化学活性表面积变化的非均相扩散场的限制。在ITO、GC和Au上滴铸AuNCs导致了不同的异质电荷转移机制;只有在GC的情况下,修饰才显著增加了电化学活性表面积(EASA)和亚铁氰化物的氧化还原动力学。对于ITO和Au基底,滴铸AuNCs降低了体系的维度而不是增加EASA,其中还观察到了Au-Au自扩散。使用密度泛函理论研究了金、ITO和GC表面之间以及与表面活性剂CTAB和亚铁氰化物分子之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab28/9367014/1b883bcd9797/la2c01001_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验