Suppr超能文献

通过基于四硫富瓦烯的电极材料的电池内聚合提高有机锂离子电池的循环寿命。

Improvement in Cycle Life of Organic Lithium-Ion Batteries by In-Cell Polymerization of Tetrathiafulvalene-Based Electrode Materials.

作者信息

Yoshimura Aya, Hemmi Keisuke, Moriwaki Hayato, Sakakibara Ryo, Kimura Hitoshi, Aso Yuto, Kinoshita Naoya, Suizu Rie, Shirahata Takashi, Yao Masaru, Yorimitsu Hideki, Awaga Kunio, Misaki Yohji

机构信息

Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan.

Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35978-35984. doi: 10.1021/acsami.2c09302. Epub 2022 Jul 27.

Abstract

Redox-active organic molecules are promising candidates for next-generation electrode materials. Nevertheless, finding low-molecular-weight organic materials with a long cycle life remains a crucial challenge. Herein, we demonstrate the application of tetrathiafulvalene and its vinyl analogue bearing triphenylamines as long-cycle-life electrodes for lithium-ion batteries (LIBs). These molecules were successfully synthesized using palladium-catalyzed C-H arylation. Electrochemical analysis revealed that a polymer formed on the electrode. LIBs comprising these molecules exhibited noteworthy charge-discharge properties with a long cycle life (the capacity after 100 cycles was greater than 90% of the discharge capacity in the third cycle) and a high utilization ratio (approximately 100%). "In-cell" polymerization during the first charge process is considered to contribute to the effect. This study indicates new avenues for the creation of organic materials for rechargeable batteries.

摘要

氧化还原活性有机分子是下一代电极材料的理想候选物。然而,找到具有长循环寿命的低分子量有机材料仍然是一个关键挑战。在此,我们展示了四硫富瓦烯及其带有三苯胺的乙烯基类似物作为锂离子电池(LIBs)长循环寿命电极的应用。这些分子通过钯催化的C-H芳基化成功合成。电化学分析表明在电极上形成了一种聚合物。包含这些分子的锂离子电池表现出值得注意的充放电性能,具有长循环寿命(100次循环后的容量大于第三次循环放电容量的90%)和高利用率(约100%)。首次充电过程中的“电池内”聚合被认为有助于产生这种效果。这项研究为开发用于可充电电池的有机材料指明了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验