From the Department of Epidemiology, Emory University, Atlanta, GA.
Department of Population Health Sciences, Georgia State University, Atlanta, GA.
Epidemiology. 2022 Nov 1;33(6):808-816. doi: 10.1097/EDE.0000000000001525. Epub 2022 Jul 27.
Population-level estimates of sexual network mixing for parameterizing prediction models of pre-exposure prophylaxis (PrEP) effectiveness are needed to inform prevention of HIV transmission among men who have sex with men (MSM). Estimates obtained by egocentric sampling are vulnerable to information bias due to incomplete respondent knowledge.
We estimated patterns of serosorting and PrEP sorting among MSM in the United States using data from a 2017-2019 egocentric sexual network study. Respondents served as proxies to report the HIV status and PrEP use of recent sexual partners. We contrasted results from a complete-case analysis (unknown HIV and PrEP excluded) versus a bias analysis with respondent-reported data stochastically reclassified to simulate unobserved self-reported data from sexual partners.
We found strong evidence of preferential partnering across analytical approaches. The bias analysis showed concordance between sexual partners of HIV diagnosis and PrEP use statuses for MSM with diagnosed HIV (39%; 95% simulation interval: 31, 46), MSM who used PrEP (32%; 21, 37), and MSM who did not use PrEP (83%; 79, 87). The fraction of partners with diagnosed HIV was higher among MSM who used PrEP (11%; 9, 14) compared with MSM who did not use PrEP (4%; 3, 5). Comparatively, across all strata of respondents, the complete-case analysis overestimated the fractions of partners with diagnosed HIV or PrEP use.
We found evidence consistent with HIV and PrEP sorting among MSM, which may decrease the population-level effectiveness of PrEP. Bias analyses can improve mixing estimates for parameterization of transmission models.
为了为预防 HIV 传播的暴露前预防(PrEP)效果预测模型提供参数,需要对人群水平的性网络混合进行估计,以了解男男性行为者(MSM)中的 HIV 传播。通过自我中心抽样获得的估计值由于受访者知识不完整,容易受到信息偏差的影响。
我们使用 2017-2019 年自我中心性网络研究的数据,估计了美国 MSM 中的血清分类和 PrEP 分类模式。受访者作为代表报告最近性伴侣的 HIV 状况和 PrEP 使用情况。我们对比了完整案例分析(排除未知的 HIV 和 PrEP)与偏倚分析的结果,偏倚分析中,受访者报告的数据随机重新分类,以模拟来自性伴侣的未观察到的自我报告数据。
我们发现了各种分析方法中存在强烈的偏好性伙伴关系的证据。偏倚分析显示,对于诊断出 HIV 的 MSM(39%;95%模拟区间:31,46)、使用 PrEP 的 MSM(32%;21,37)和未使用 PrEP 的 MSM(83%;79,87),他们的性伴侣的 HIV 诊断和 PrEP 使用状况具有一致性。与未使用 PrEP 的 MSM 相比(4%;3,5),使用 PrEP 的 MSM 的伴侣中诊断出 HIV 的比例更高(11%;9,14)。相比之下,在所有受访者的阶层中,完整案例分析高估了伴侣中诊断出 HIV 或使用 PrEP 的比例。
我们发现了 MSM 中存在 HIV 和 PrEP 分类的证据,这可能会降低 PrEP 的人群水平效果。偏倚分析可以提高混合估计值,以对传播模型进行参数化。