Suppr超能文献

基于机器学习的肝豆状核变性患者肝硬化预测:来自中国西南地区的病例对照研究。

Liver cirrhosis prediction for patients with Wilson disease based on machine learning: a case-control study from southwest China.

机构信息

Department of Geriatric Medicine and Neurology, West China School of Public Health and West China Fourth Hospital.

West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, People's Republic of China.

出版信息

Eur J Gastroenterol Hepatol. 2022 Oct 1;34(10):1067-1073. doi: 10.1097/MEG.0000000000002424. Epub 2022 Jul 25.

Abstract

OBJECTIVES

Wilson disease (WD) is a rare autosomal recessive disease caused by an ATP7B gene mutation. Liver cirrhosis is an important issue that affects the clinical management and prognosis of WD patients. Blood routine examination is a potential biomarker for predicting the occurrence of liver cirrhosis in WD. We aim to construct a predictive model for the occurrence of liver cirrhosis using general clinical information, blood routine examination, urine copper, and serum ceruloplasmin through a machine learning approach.

METHODS

Case-control study of WD patients admitted to West China Fourth Hospital between 2005 and 2020. Patients with a score of at least four in scoring system of WD were enrolled. A machine learning model was constructed by EmpowerStats software according to the general clinical data, blood routine examination, 24 h urinary copper, and serum ceruloplasmin.

RESULTS

This study analyzed 346 WD patients, of which 246 were without liver cirrhosis. And we found platelet large cell count (P-LCC), red cell distribution width CV (RDW-CV), serum ceruloplasmin, age at diagnosis, and mean corpuscular volume (MCV) were the top five important predictors. Moreover, the model was of high accuracy, with an area under the receiver operating characteristic curve of 0.9998 in the training set and 0.7873 in the testing set.

CONCLUSIONS

In conclusion, the predictive model for predicting liver cirrhosis in WD, constructed by machine learning, had a higher accuracy. And the most important indices in the predictive model were P-LCC, RDW-CV, serum ceruloplasmin, age at diagnosis, and MCV.

摘要

目的

肝豆状核变性(WD)是一种由 ATP7B 基因突变引起的罕见常染色体隐性遗传病。肝硬化是影响 WD 患者临床管理和预后的重要问题。血常规检查是预测 WD 患者发生肝硬化的潜在生物标志物。我们旨在通过机器学习方法,利用一般临床信息、血常规检查、尿铜和血清铜蓝蛋白构建预测肝硬化发生的模型。

方法

这是一项 2005 年至 2020 年期间在华西第四医院住院的 WD 患者的病例对照研究。纳入 WD 评分至少为 4 分的患者。EmpowerStats 软件根据一般临床数据、血常规检查、24 小时尿铜和血清铜蓝蛋白构建机器学习模型。

结果

本研究共分析了 346 例 WD 患者,其中 246 例无肝硬化。我们发现血小板大细胞计数(P-LCC)、红细胞分布宽度 CV(RDW-CV)、血清铜蓝蛋白、诊断时年龄和平均红细胞体积(MCV)是最重要的前 5 个预测指标。此外,该模型具有较高的准确性,在训练集中的受试者工作特征曲线下面积为 0.9998,在测试集中为 0.7873。

结论

总之,通过机器学习构建的预测 WD 患者肝硬化的预测模型具有较高的准确性。预测模型中最重要的指标是 P-LCC、RDW-CV、血清铜蓝蛋白、诊断时年龄和 MCV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6490/9439697/05c9712c42fa/ejgh-34-1067-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验