Department of Mathematics, University of Management and Technology, Lahore, 54770, Pakistan.
Department of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
Sci Rep. 2022 Jul 27;12(1):12765. doi: 10.1038/s41598-022-16601-9.
The communication describes a theoretical framework for tangent hyperbolic fluid of nano-biofilm due to an extending or shrinking sheet that comprises a stagnation point flow, chemical reaction with activation energy, and bioconvection of gyrotactic microorganisms. The varying transport features due to dynamic viscosity, thermal conductivity, nano-particle mass permeability and microbe organisms diffusivity are taken into account for the novelty of this work. The inspiration is developed to enhance heat transfer. A set of leading partial differential equations is formed along with appropriate boundary constraints. Using similarity transformations, the basic formulation is transitioned into non-linear differential equations. To produce observational data, the shooting technique and Runge-Kutta fourth order method are employed. The coding of numerical scheme is developed in Matlab script. The visual representation of the effects of diverse fluid transport properties and distinctive parameters on speed, temperature, concentration and motile density are evaluated. The velocity become faster when the parameters [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are enhanced. Brownian motion, thermal conductivity, heat generation as well as thermophoresis factors all strengthen the temperature distribution, however the nano-particle concentration profile is enhanced as the nano-particle mass conductivity variable, activation energy as well as the thermophoresis variable are boosted. The microorganism density improves significantly when the microorganism diffusivity factor increases. The skin friction, Sherwood number, Nusselt number and motile density number decline against the incremented transport parameters.
该通信描述了一个理论框架,用于描述由于扩展或收缩片而导致的纳米生物膜的正切双曲流体,该片包括驻点流动、带有激活能的化学反应和旋进微生物的生物对流。由于动态粘度、热导率、纳米颗粒质量渗透率和微生物扩散率的变化输送特性,考虑了这项工作的新颖性。灵感来源于增强传热。一组主要的偏微分方程与适当的边界约束一起形成。通过相似变换,将基本公式转换为非线性微分方程。为了生成观测数据,采用了拍摄技术和 Runge-Kutta 四阶方法。数值方案的编码是在 Matlab 脚本中开发的。评估了不同流体输送特性和独特参数对速度、温度、浓度和游动密度的影响。当参数[公式:见文本]、[公式:见文本]、[公式:见文本]和[公式:见文本]增强时,速度会变快。布朗运动、热导率、热生成以及热泳系数都增强了温度分布,然而,随着纳米颗粒质量导率变量、激活能以及热泳变量的增加,纳米颗粒浓度分布得到了增强。当微生物扩散率因子增加时,微生物密度显著提高。摩擦系数、舍伍德数、努塞尔数和游动密度数随着输送参数的增加而下降。