Suppr超能文献

抗抖动相位恢复波前传感算法

Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms.

作者信息

Guo Liang, Ju Guohao, Xu Boqian, Bai Xiaoquan, Meng Qingyu, Jiang Fengyi, Xu Shuyan

机构信息

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2022 Jul 26;22(15):5584. doi: 10.3390/s22155584.

Abstract

Phase retrieval wavefront sensing methods are now of importance for imaging quality maintenance of space telescopes. However, their accuracy is susceptible to line-of-sight jitter due to the micro-vibration of the platform, which changes the intensity distribution of the image. The effect of the jitter shows some stochastic properties and it is hard to present an analytic solution to this problem. This paper establishes a framework for jitter-robust image-based wavefront sensing algorithm, which utilizes two-dimensional Gaussian convolution to describe the effect of jitter on an image. On this basis, two classes of jitter-robust phase retrieval algorithms are proposed, which can be categorized into iterative-transform algorithms and parametric algorithms, respectively. Further discussions are presented for the cases where the magnitude of jitter is unknown to us. Detailed simulations and a real experiment are performed to demonstrate the effectiveness and practicality of the proposed approaches. This work improves the accuracy and practicality of the phase retrieval wavefront sensing methods in the space condition with non-ignorable micro-vibration.

摘要

相位恢复波前传感方法对于空间望远镜成像质量的维持具有重要意义。然而,由于平台的微振动,其精度易受视线抖动的影响,这会改变图像的强度分布。抖动的影响呈现出一些随机特性,难以给出该问题的解析解。本文建立了一种基于图像的抗抖动波前传感算法框架,该框架利用二维高斯卷积来描述抖动对图像的影响。在此基础上,提出了两类抗抖动相位恢复算法,它们分别可归类为迭代变换算法和参数算法。针对抖动幅度未知的情况进行了进一步讨论。进行了详细的仿真和实际实验,以证明所提方法的有效性和实用性。这项工作提高了在存在不可忽略微振动的空间条件下相位恢复波前传感方法的精度和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffba/9332291/ce6d970f2979/sensors-22-05584-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验