Zhao Yong, Liu Xiaojie, Jing Xin, Liu Yang, Liu Hao, Li Shaonan, Yu Liangmin, Dai Shuixing, Sun Mingliang
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
Open Studio for Marine Corrosion and Protection Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
J Colloid Interface Sci. 2022 Dec;627:880-890. doi: 10.1016/j.jcis.2022.07.096. Epub 2022 Jul 21.
A series of molecules with imide units bridged by the core of thiophene-based groups, namely N-dimethylaminopropyl-4-thiophene-1,8- naphthalimide (NT), bis(N-dimethylaminopropyl)-4-thiophene-1,8-naphthalimide (NTN), and bis(N-dimethylaminopropyl)-4-bithiophene-1,8-naphthalimide (N2TN), have been reported as cathode interfacial materials (CIMs) to realize low interfacial tension with the blend in organic solar cells (OSCs). We evaluated the Ohmic contact between the active layer and these cathode interlayers basedon various characterizations, which is of great significance for further understanding these imide-based interlayers. It turned out that the homogeneous and continuous NTN interlayer as a CIM balanced the factors of crystallization and film-forming property, and broke through the limitation of poor conductivity and high aggregation in our previous work. Moreover, compared with NT and N2TN, the NTN interlayer achieve a combination of good solubility in methanol, efficient electron mobility, and aligned work function. These advantages of NTN are conducive to the realization of high-efficient interfacial electron collection and transfer, thus improving the short-circuit current density (J) and filling factor (FF) of devices. Therefore, the binary OSCs (PM6:Y6) based on NTN engineered aluminium-cathode with excellent stability demonstrate a maximum power conversion efficiency (PCE) of 16.56 %, which is higher than NT (PCE = 1.34 %) and N2TN (PCE = 13.90 %). The enhanced performance is ascribed to the improvement of JSC and FF, which is originated from the outstanding conductivity and high-quality interface of NTN. Surprisingly, the PM6:Y6-based semitransparent device with NTN obtain a PCE of 13.43 % with an average visible transmittance of 17.79 %, which is better than traditional PDINO. This study highlights a potential strategy for enhancing the performance of OSCs by the interface engineering via decreasing the interfacial intension.
一系列具有由噻吩基基团核心桥连的酰亚胺单元的分子,即N - 二甲基氨基丙基 - 4 - 噻吩 - 1,8 - 萘二甲酰亚胺(NT)、双(N - 二甲基氨基丙基) - 4 - 噻吩 - 1,8 - 萘二甲酰亚胺(NTN)和双(N - 二甲基氨基丙基) - 4 - 联噻吩 - 1,8 - 萘二甲酰亚胺(N2TN),已被报道作为阴极界面材料(CIM)用于在有机太阳能电池(OSC)中实现与共混物的低界面张力。我们基于各种表征评估了活性层与这些阴极中间层之间的欧姆接触,这对于进一步理解这些基于酰亚胺的中间层具有重要意义。结果表明,作为CIM的均匀连续的NTN中间层平衡了结晶和成膜性能的因素,并突破了我们先前工作中导电性差和聚集度高的限制。此外,与NT和N2TN相比,NTN中间层在甲醇中具有良好的溶解性、高效的电子迁移率和匹配的功函数。NTN的这些优点有利于实现高效的界面电子收集和转移,从而提高器件的短路电流密度(J)和填充因子(FF)。因此,基于NTN设计的铝阴极的二元OSC(PM6:Y6)具有优异的稳定性,其最大功率转换效率(PCE)为16.56%,高于NT(PCE = 1.34%)和N2TN(PCE = 13.90%)。性能的提高归因于JSC和FF的改善,这源于NTN出色的导电性和高质量的界面。令人惊讶的是,基于PM6:Y6且带有NTN的半透明器件的PCE为13.43%,平均可见光透过率为17.79%,优于传统的PDINO。这项研究突出了一种通过降低界面张力进行界面工程来提高OSC性能的潜在策略。