Suppr超能文献

系统性硬皮病的干细胞移植。

Stem cell transplantation for systemic sclerosis.

机构信息

Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA.

Department of General Internal Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

Cochrane Database Syst Rev. 2022 Jul 29;7(7):CD011819. doi: 10.1002/14651858.CD011819.pub2.

Abstract

BACKGROUND

Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by systemic inflammation, fibrosis, vascular injury, reduced quality of life, and limited treatment options. Autologous hematopoietic stem cell transplantation (HSCT) has emerged as a potential intervention for severe SSc refractory to conventional treatment.

OBJECTIVES

To assess the benefits and harms of autologous hematopoietic stem cell transplantation for the treatment of systemic sclerosis (specifically, non-selective myeloablative HSCT versus cyclophosphamide; selective myeloablative HSCT versus cyclophosphamide; non-selective non-myeloablative HSCT versus cyclophosphamide).

SEARCH METHODS

We searched for randomized controlled trials (RCTs) in CENTRAL, MEDLINE, Embase, and trial registries from database insertion to 4 February 2022.

SELECTION CRITERIA

We included RCTs that compared HSCT to immunomodulators in the treatment of SSc.

DATA COLLECTION AND ANALYSIS

Two review authors independently selected studies for inclusion, extracted study data, and performed risk of bias and GRADE assessments to assess the certainty of evidence using standard Cochrane methods.

MAIN RESULTS

We included three RCTs evaluating: non-myeloablative non-selective HSCT (10 participants), non-myeloablative selective HSCT (79 participants), and myeloablative selective HSCT (36 participants). The comparator in all studies was cyclophosphamide (123 participants). The study examining non-myeloablative non-selective HSCT had a high risk of bias given the differences in baseline characteristics between the two arms. The other studies had a high risk of detection bias for participant-reported outcomes. The studies had follow-up periods of one to 4.5 years. Most participants had severe disease, mean age 40 years, and the duration of disease was less than three years. Efficacy No study demonstrated an overall mortality benefit of HSCT when compared to cyclophosphamide. However, non-myeloablative selective HSCT showed overall survival benefits using Kaplan-Meier curves at 10 years and myeloablative selective HSCT at six years. We graded our certainty of evidence as moderate for non-myeloablative selective HSCT and myeloablative selective HSCT. Certainty of evidence was low for non-myeloablative non-selective HSCT. Event-free survival was improved compared to cyclophosphamide with non-myeloablative selective HSCT at 48 months (hazard ratio (HR) 0.34, 95% confidence interval (CI) 0.16 to 0.74; moderate-certainty evidence). There was no improvement with myeloablative selective HSCT at 54 months (HR 0.54 95% CI 0.23 to 1.27; moderate-certainty evidence). The non-myeloablative non-selective HSCT trial did not report event-free survival. There was improvement in functional ability measured by the Health Assessment Questionnaire Disability Index (HAQ-DI, scale from 0 to 3 with 3 being very severe functional impairment) with non-myeloablative selective HSCT after two years with a mean difference (MD) of -0.39 (95% CI -0.72 to -0.06; absolute treatment benefit (ATB) -13%, 95% CI -24% to -2%; relative percent change (RPC) -27%, 95% CI -50% to -4%; low-certainty evidence). Myeloablative selective HSCT demonstrated a risk ratio (RR) for improvement of 3.4 at 54 months (95% CI 1.5 to 7.6; ATB -37%, 95% CI -18% to -57%; RPC -243%, 95% CI -54% to -662%; number needed to treat for an additional beneficial outcome (NNTB) 3, 95% CI 2 to 9; low-certainty evidence). The non-myeloablative non-selective HSCT trial did not report HAQ-DI results. All transplant modalities showed improvement of modified Rodnan skin score (mRSS) (scale from 0 to 51 with the higher number being more severe skin thickness) favoring HSCT over cyclophosphamide. At two years, non-myeloablative selective HSCT showed an MD in mRSS of -11.1 (95% CI -14.9 to -7.3; ATB -22%, 95% CI -29% to -14%; RPC -43%, 95% CI -58% to -28%; moderate-certainty evidence). At 54 months, myeloablative selective HSCT at showed a greater improvement in skin scores than the cyclophosphamide group (RR 1.51, 95% CI 1.06 to 2.13; ATB -27%, 95% CI -6% to -47%; RPC -51%, 95% CI -6% to -113%; moderate-certainty evidence). The NNTB was 4 (95% CI 3 to 18). At one year, for non-myeloablative non-selective HSCT the MD was -16.00 (95% CI -26.5 to -5.5; ATB -31%, 95% CI -52% to -11%; RPC -84%, 95% CI -139% to -29%; low-certainty evidence). No studies reported data on pulmonary arterial hypertension. Adverse events In the non-myeloablative selective HSCT study, there were 51/79 serious adverse events with HSCT and 30/77 with cyclophosphamide (RR 1.7, 95% CI 1.2 to 2.3), with an absolute risk increase of 26% (95% CI 10% to 41%), and a relative percent increase of 66% (95% CI 20% to 129%). The number needed to treat for an additional harmful outcome was 4 (95% CI 3 to 11) (moderate-certainty evidence). In the myeloablative selective HSCT study, there were similar rates of serious adverse events between groups (25/34 with HSCT and 19/37 with cyclophosphamide; RR 1.43, 95% CI 0.99 to 2.08; moderate-certainty evidence). The non-myeloablative non-selective HSCT trial did not clearly report serious adverse events.

AUTHORS' CONCLUSIONS: Non-myeloablative selective and myeloablative selective HSCT had moderate-certainty evidence for improvement in event-free survival, and skin thicknesscompared to cyclophosphamide. There is also low-certainty evidence that these modalities of HSCT improve physical function. However, non-myeloablative selective HSCT and myeloablative selective HSCT resulted in more serious adverse events than cyclophosphamide; highlighting the need for careful risk-benefit considerations for people considering these HSCTs. Evidence for the efficacy and adverse effects of non-myeloablative non-selective HSCT is limited at this time. Due to evidence provided from one study with high risk of bias, we have low-certainty evidence that non-myeloablative non-selective HSCT improves outcomes in skin scores, forced vital capacity, and safety. Two modalities of HSCT appeared to be a promising treatment option for SSc though there is a high risk of early treatment-related mortality and other adverse events. Additional research is needed to determine the effectiveness and adverse effects of non-myeloablative non-selective HSCT in the treatment of SSc. Also, more studies will be needed to determine how HSCT compares to other treatment options such as mycophenolate mofetil, as cyclophosphamide is no longer the first-line treatment for SSc. Finally, there is a need for a greater understanding of the role of HSCT for people with SSc with significant comorbidities or complications from SSc that were excluded from the trial criteria.

摘要

背景

系统性硬化症 (SSc) 是一种慢性自身免疫性疾病,其特征为全身性炎症、纤维化、血管损伤、生活质量降低和治疗选择有限。自体造血干细胞移植 (HSCT) 已成为治疗常规治疗无效的严重 SSc 的一种潜在干预手段。

目的

评估自体造血干细胞移植治疗系统性硬化症的疗效和安全性(具体为非清髓性选择性 HSCT 与环磷酰胺相比、清髓性选择性 HSCT 与环磷酰胺相比、非清髓性非选择性 HSCT 与环磷酰胺相比)。

检索方法

我们检索了 CENTRAL、MEDLINE、Embase 和试验注册库,检索时间截至 2022 年 2 月 4 日。

选择标准

我们纳入了将 HSCT 与免疫调节剂比较治疗 SSc 的随机对照试验。

数据收集与分析

两名综述作者独立选择研究进行纳入、提取研究数据,并使用标准 Cochrane 方法评估偏倚风险和 GRADE 评估证据确定性。

主要结果

我们纳入了三项评估非清髓性非选择性 HSCT(10 名参与者)、非清髓性选择性 HSCT(79 名参与者)和清髓性选择性 HSCT(36 名参与者)的 RCT。所有研究的对照组均为环磷酰胺(123 名参与者)。研究非清髓性非选择性 HSCT 的试验存在高偏倚风险,因为两组之间的基线特征存在差异。其他研究在参与者报告的结局方面存在检测偏倚的高风险。这些研究的随访时间为 1 至 4.5 年。大多数参与者患有严重疾病,平均年龄为 40 岁,疾病持续时间不到 3 年。

疗效

没有研究表明与环磷酰胺相比,HSCT 对总体死亡率有获益。然而,非清髓性选择性 HSCT 在 10 年时使用 Kaplan-Meier 曲线显示出总体生存率获益,而清髓性选择性 HSCT 在 6 年时显示出获益。我们将非清髓性选择性 HSCT 和清髓性选择性 HSCT 的证据确定性评为中度,而非清髓性非选择性 HSCT 的证据确定性为低。

事件无进展生存率

与环磷酰胺相比,非清髓性选择性 HSCT 在 48 个月时改善(风险比 (HR) 0.34,95%置信区间 (CI) 0.16 至 0.74;中度确定性证据),清髓性选择性 HSCT 在 54 个月时改善(HR 0.54,95% CI 0.23 至 1.27;中度确定性证据)。非清髓性非选择性 HSCT 试验未报告事件无进展生存率。

功能性能力

非清髓性选择性 HSCT 在两年时使用健康评估问卷残疾指数 (HAQ-DI,范围为 0 至 3,3 表示严重功能障碍)改善(平均差异 (MD) -0.39,95%置信区间 (CI) -0.72 至 -0.06;绝对治疗获益 (ATB) -13%,95%置信区间 (CI) -24% 至 -2%;相对百分比变化 (RPC) -27%,95%置信区间 (CI) -50% 至 -4%;低确定性证据)。清髓性选择性 HSCT 在 54 个月时改善(风险比 (RR) 3.4,95%置信区间 (CI) 1.5 至 7.6;ATB -37%,95%置信区间 (CI) -18% 至 -57%;RPC -243%,95%置信区间 (CI) -54% 至 -662%;额外获益需要治疗数 (NNTB) 3,95%置信区间 (CI) 2 至 9;低确定性证据)。非清髓性非选择性 HSCT 试验未报告 HAQ-DI 结果。所有移植方式均显示出改良 Rodnan 皮肤评分 (mRSS) 的改善(范围为 0 至 51,数字越大表示皮肤厚度越严重),HSCT 优于环磷酰胺。在两年时,非清髓性选择性 HSCT 显示 mRSS 的 MD 为 -11.1(95%置信区间 (CI) -14.9 至 -7.3;ATB -22%,95%置信区间 (CI) -29% 至 -14%;RPC -43%,95%置信区间 (CI) -58% 至 -28%;中度确定性证据)。在 54 个月时,清髓性选择性 HSCT 组的皮肤评分改善大于环磷酰胺组(RR 1.51,95%置信区间 (CI) 1.06 至 2.13;ATB -27%,95%置信区间 (CI) -6% 至 -47%;RPC -51%,95%置信区间 (CI) -6% 至 -113%;中度确定性证据)。NNTB 为 4(95%置信区间 (CI) 3 至 18)。在一年时,非清髓性非选择性 HSCT 的 MD 为 -16.00(95%置信区间 (CI) -26.5 至 -5.5;ATB -31%,95%置信区间 (CI) -52% 至 -11%;RPC -84%,95%置信区间 (CI) -139% 至 -29%;低确定性证据)。

没有研究报告肺动脉高压的数据。

不良事件

非清髓性选择性 HSCT 研究中,HSCT 组有 51 例严重不良事件,环磷酰胺组有 30 例(RR 1.7,95%置信区间 (CI) 1.2 至 2.3),绝对风险增加 26%(95%置信区间 (CI) 10% 至 41%),相对百分比增加 66%(95%置信区间 (CI) 20% 至 129%)。需要额外治疗有害结果的数量为 4(95%置信区间 (CI) 3 至 11)(中度确定性证据)。在清髓性选择性 HSCT 研究中,两组之间的严重不良事件发生率相似(HSCT 组 25 例,环磷酰胺组 19 例;RR 1.43,95%置信区间 (CI) 0.99 至 2.08;中度确定性证据)。非清髓性非选择性 HSCT 试验未明确报告严重不良事件。

作者结论

非清髓性选择性和清髓性选择性 HSCT 在改善事件无进展生存率和皮肤厚度方面与环磷酰胺相比具有中度确定性证据。也有低确定性证据表明这些 HSCT 方式可以改善身体功能。然而,非清髓性选择性 HSCT 和清髓性选择性 HSCT 导致的严重不良事件比环磷酰胺多;这凸显了在考虑这些 HSCT 时需要仔细权衡风险效益。非清髓性非选择性 HSCT 的疗效和不良反应证据有限。由于一项研究存在高偏倚风险,我们有低确定性证据表明非清髓性非选择性 HSCT 可改善皮肤评分、用力肺活量和安全性。两种 HSCT 似乎是 SSc 的一种有前途的治疗选择,尽管存在早期治疗相关死亡率和其他不良事件的高风险。需要进一步研究来确定非清髓性非选择性 HSCT 在治疗 SSc 中的有效性和不良反应。此外,还需要更多的研究来确定 HSCT 与其他治疗方法(如霉酚酸酯)相比在 SSc 中的效果,因为环磷酰胺不再是 SSc 的一线治疗药物。最后,需要更好地了解具有 SSc 严重合并症或并发症的患者以及被排除在试验标准之外的患者的 HSCT 作用。

相似文献

1
Stem cell transplantation for systemic sclerosis.
Cochrane Database Syst Rev. 2022 Jul 29;7(7):CD011819. doi: 10.1002/14651858.CD011819.pub2.
2
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD010216. doi: 10.1002/14651858.CD010216.pub7.
3
Antidepressants for hip and knee osteoarthritis.
Cochrane Database Syst Rev. 2022 Oct 21;10(10):CD012157. doi: 10.1002/14651858.CD012157.pub2.
4
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2021 Sep 14;9(9):CD010216. doi: 10.1002/14651858.CD010216.pub6.
5
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2024 Jan 8;1(1):CD010216. doi: 10.1002/14651858.CD010216.pub8.
6
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2025 Jan 29;1(1):CD010216. doi: 10.1002/14651858.CD010216.pub9.
7
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
8
Interventions for treating proximal humeral fractures in adults.
Cochrane Database Syst Rev. 2022 Jun 21;6(6):CD000434. doi: 10.1002/14651858.CD000434.pub5.
9
Topical clonidine for neuropathic pain in adults.
Cochrane Database Syst Rev. 2022 May 19;5(5):CD010967. doi: 10.1002/14651858.CD010967.pub3.
10
Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema.
Cochrane Database Syst Rev. 2018 Apr 18;4(4):CD011599. doi: 10.1002/14651858.CD011599.pub2.

引用本文的文献

1
Stem cell therapy in systemic sclerosis.
Clin Rheumatol. 2025 Jul 2. doi: 10.1007/s10067-025-07557-y.
2
Efficacy of cyclophosphamide for skin fibrosis in systemic sclerosis: a systematic review and single-arm meta-analysis.
Eur J Clin Pharmacol. 2025 Jun;81(6):863-874. doi: 10.1007/s00228-025-03837-3. Epub 2025 Apr 8.
3
Defining immune reset: achieving sustained remission in autoimmune diseases.
Nat Rev Immunol. 2025 Mar 5. doi: 10.1038/s41577-025-01141-w.
5
Comorbidity burden on mortality in patients with systemic sclerosis.
RMD Open. 2024 Oct 18;10(4):e004637. doi: 10.1136/rmdopen-2024-004637.
6
The 2024 British Society for Rheumatology guideline for management of systemic sclerosis.
Rheumatology (Oxford). 2024 Nov 1;63(11):2956-2975. doi: 10.1093/rheumatology/keae394.
7
Recent Advances in Treatment of Systemic Sclerosis and Morphea.
Am J Clin Dermatol. 2024 Mar;25(2):213-226. doi: 10.1007/s40257-023-00831-2. Epub 2023 Dec 12.

本文引用的文献

1
Outcomes linked to eligibility for stem cell transplantation trials in diffuse cutaneous systemic sclerosis.
Rheumatology (Oxford). 2022 May 5;61(5):1948-1956. doi: 10.1093/rheumatology/keab604.
2
Long term outcomes of the French ASTIS systemic sclerosis cohort using the global rank composite score.
Bone Marrow Transplant. 2021 Sep;56(9):2259-2267. doi: 10.1038/s41409-021-01355-1. Epub 2021 Jun 9.
4
Epidemiology of systemic sclerosis and systemic sclerosis-associated interstitial lung disease.
Clin Epidemiol. 2019 Apr 18;11:257-273. doi: 10.2147/CLEP.S191418. eCollection 2019.
6
Autologous Hematopoietic Stem Cell Transplantation for Systemic Sclerosis: A Systematic Review and Meta-Analysis.
Biol Blood Marrow Transplant. 2018 May;24(5):937-944. doi: 10.1016/j.bbmt.2018.01.020. Epub 2018 Jan 31.
7
Myeloablative Autologous Stem-Cell Transplantation for Severe Scleroderma.
N Engl J Med. 2018 Jan 4;378(1):35-47. doi: 10.1056/nejmoa1703327.
8
Reliability and minimal clinically important differences of forced vital capacity: Results from the Scleroderma Lung Studies (SLS-I and SLS-II).
Am J Respir Crit Care Med. 2018 Mar 1;197(5):644-652. doi: 10.1164/rccm.201709-1845OC. Epub 2017 Nov 3.
9
Autologous stem cell transplantation in systemic sclerosis: a systematic review.
Clin Exp Rheumatol. 2017 Sep-Oct;35 Suppl 106(4):198-207. Epub 2017 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验