Suppr超能文献

免疫刺激咪唑并[4,5-c]喹啉抗体药物偶联物的设计与表征。

Design and Characterization of Immune-Stimulating Imidazo[4,5-c]quinoline Antibody-Drug Conjugates.

机构信息

School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States.

出版信息

Mol Pharm. 2022 Sep 5;19(9):3228-3241. doi: 10.1021/acs.molpharmaceut.2c00392. Epub 2022 Jul 29.

Abstract

Traditional antibody-drug conjugate (ADC) technology has employed tumor-targeting antibodies to selectively deliver ultrapotent cytotoxins to tumor tissue. While this technology has been highly successful, resulting in the FDA approval of over 10 ADCs, the field continues to struggle with modest efficacy and significant off-target toxicity. Concurrent with the struggles of the ADC field, a new generation of immune-activating therapeutics has arisen, most clearly exemplified by the PD-1/PD-L1 inhibitors that are now part of standard-of-care treatment regimens for a variety of cancers. The success of these immuno-oncology therapeutic agents has prompted the investigation of a variety of new immuno-stimulant approaches, including toll-like receptor (TLR) activators. Herein, we describe the optimization of ADC technology for the selective delivery of a potent series of TLR7 agonists. A series of imidazole[4,5-c]quinoline agonists (as exemplified by compound ) were shown to selectively agonize the human and mouse TLR7 receptor at low nanomolar concentrations, resulting in the release of IFNα from human peripheral blood mononuclear cells (hPBMCs) and the upregulation of CD86 on antigen-presenting cells. Compound was attached to a deglycosylated (Fc-γ null) HER2-targeting antibody via a cleavable linker, resulting in an ADC () that potently and selectively activated the TLR7 pathway in tumor-associated macrophages via a "bystander" mechanism. We demonstrated that this ADC rapidly released the TLR7 agonist into the media when incubated with HER2+ cells. This release was not observed upon incubation with an isotype control ADC and furthermore was suppressed by co-administration of the naked antibody. In co-culture experiments with HER2+ HCC1954 cells, this ADC induced the activation of the NFκB pathway in mouse macrophages and the release of IFNα from hPBMCs, while a corresponding isotype control ADC did not. Finally, we demonstrated that IP administration of induced complete tumor regression in an HCC1954 xenograft study in SCID beige mice. Unlike related ADC technology that has been reported recently, our technology relies on the passive diffusion of the TLR7 agonist into tumor-associated macrophages rather than Fc-γ-mediated uptake. Based on these observations, we believe that this ADC technology holds significant potential for both oncology and infectious disease applications.

摘要

传统抗体药物偶联物(ADC)技术利用肿瘤靶向抗体将超效细胞毒素选择性递送至肿瘤组织。尽管该技术取得了巨大成功,已获得 FDA 批准的 ADC 超过 10 种,但该领域仍面临疗效不佳和显著的脱靶毒性问题。与 ADC 领域的困境同时出现的是新一代免疫激活治疗药物的出现,其中最明显的例子是 PD-1/PD-L1 抑制剂,现已成为多种癌症标准治疗方案的一部分。这些免疫肿瘤治疗药物的成功促使人们对各种新的免疫刺激方法进行了研究,包括 Toll 样受体(TLR)激活剂。在此,我们描述了用于选择性递送电荷高效 TLR7 激动剂的 ADC 技术的优化。一系列咪唑并[4,5-c]喹啉激动剂(以化合物 为例)在低纳摩尔浓度下选择性地激动人源和鼠源 TLR7 受体,导致人外周血单核细胞(hPBMC)释放 IFNα,并上调抗原呈递细胞上的 CD86。化合物 通过可切割连接子连接到去糖基化(Fc-γ 缺失)HER2 靶向抗体上,形成的 ADC()通过“旁观者”机制在肿瘤相关巨噬细胞中强力且选择性地激活 TLR7 途径。我们证明,当与 HER2+细胞孵育时,该 ADC 会迅速将 TLR7 激动剂释放到培养基中。当与同型对照 ADC 孵育时,不会观察到这种释放,并且裸抗体的共同给药会抑制这种释放。在与 HER2+ HCC1954 细胞的共培养实验中,该 ADC 诱导小鼠巨噬细胞中 NFκB 途径的激活和 hPBMC 中 IFNα 的释放,而相应的同型对照 ADC 则没有。最后,我们证明在 SCID beige 小鼠的 HCC1954 异种移植研究中,IP 给予 可诱导完全肿瘤消退。与最近报道的相关 ADC 技术不同,我们的技术依赖于 TLR7 激动剂被动扩散进入肿瘤相关巨噬细胞,而不是 Fcγ 介导的摄取。基于这些观察结果,我们认为该 ADC 技术在肿瘤学和传染病应用方面具有重要潜力。

相似文献

4
Synthesis and Optimization of 1-Substituted Imidazo[4,5-]quinoline TLR7 Agonists.1-取代咪唑并[4,5-]喹啉TLR7激动剂的合成与优化
ACS Med Chem Lett. 2023 Sep 14;14(10):1358-1368. doi: 10.1021/acsmedchemlett.3c00260. eCollection 2023 Oct 12.

引用本文的文献

本文引用的文献

7
Latest Advances in Small Molecule TLR 7/8 Agonist Drug Research.小分子 TLR7/8 激动剂药物研究的最新进展。
Curr Top Med Chem. 2019;19(24):2228-2238. doi: 10.2174/1568026619666191009165418.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验