Biomedical Engineering, Eindhoven University of Technology, Rondom 70, 5612 AP, Eindhoven, The Netherlands.
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
MAGMA. 2023 Feb;36(1):79-93. doi: 10.1007/s10334-022-01033-3. Epub 2022 Jul 29.
Diffusion-weighted MRI can assist preoperative planning by reconstructing the trajectory of eloquent fiber pathways, such as the corticospinal tract (CST). However, accurate reconstruction of the full extent of the CST remains challenging with existing tractography methods. We suggest a novel tractography algorithm exploiting unused fiber orientations to produce more complete and reliable results.
Our novel approach, referred to as multi-level fiber tractography (MLFT), reconstructs fiber pathways by progressively considering previously unused fiber orientations at multiple levels of tract propagation. Anatomical priors are used to minimize the number of false-positive pathways. The MLFT method was evaluated on synthetic data and in vivo data by reconstructing the CST while compared to conventional tractography approaches.
The radial extent of MLFT reconstructions is comparable to that of probabilistic reconstruction: [Formula: see text] for the left and [Formula: see text] for the right hemisphere according to Wilcoxon test, while achieving significantly higher topography preservation compared to probabilistic tractography: [Formula: see text].
MLFT provides a novel way to reconstruct fiber pathways by adding the capability of including branching pathways in fiber tractography. Thanks to its robustness, feasible reconstruction extent and topography preservation, our approach may assist in clinical practice as well as in virtual dissection studies.
扩散加权磁共振成像(DWI)可以通过重建语言功能纤维束(如皮质脊髓束(CST))的轨迹来辅助术前规划。然而,现有的纤维束追踪方法在准确重建 CST 的全长方面仍然具有挑战性。我们提出了一种新的纤维束追踪算法,利用未使用的纤维方向来产生更完整和可靠的结果。
我们的新方法称为多级纤维追踪(MLFT),通过在多个纤维传播水平上逐步考虑以前未使用的纤维方向来重建纤维束。使用解剖学先验来最小化假阳性通路的数量。通过在合成数据和体内数据上重建 CST 来评估 MLFT 方法,并与传统的纤维追踪方法进行比较。
MLFT 重建的放射状范围与概率重建相当:根据 Wilcoxon 检验,左侧为 [Formula: see text],右侧为 [Formula: see text],而与概率追踪相比,拓扑结构的保留程度显著更高:[Formula: see text]。
MLFT 通过增加在纤维追踪中包括分支通路的能力,提供了一种重建纤维束的新方法。由于其鲁棒性、可行的重建范围和拓扑结构的保留,我们的方法可能有助于临床实践以及虚拟解剖研究。