Lin Yu-Che, She Nian-Zu, Chen Chung-Hao, Yabushita Atsushi, Lin Heng, Li Meng-Hua, Chang Bin, Hsueh Ting-Fang, Tsai Bing-Shiun, Chen Po-Tuan, Yang Yang, Wei Kung-Hwa
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
ACS Appl Mater Interfaces. 2022 Aug 24;14(33):37990-38003. doi: 10.1021/acsami.2c06135. Epub 2022 Jul 29.
In this study, we synthesized four new A-DA'D-A acceptors (where A and D represent acceptor and donor chemical units) incorporating perylene diimide units (A') as their core structures and presenting various modes of halogenation and substitution of the functional groups at their end groups (A). In these acceptors, by fusing dithiophenepyrrole (DTP) moieties (D) to the helical perylene diimide dimer (hPDI) to form fused-hPDI (FhPDI) cores, we could increase the D/A' oscillator strength in the cores and, thus, the intensity of intramolecular charge transfer (ICT), thereby enhancing the intensity of the absorption bands. With four different end group units─IC2F, IC2Cl, IO2F, and IO2Cl─tested, each of these acceptor molecules exhibited different optical characteristics. Among all of these systems, the organic photovoltaic device incorporating the polymer PCE10 blended with the acceptor FhPDI-IC2F (1:1.1 wt %) had the highest power conversion efficiency (PCE) of 9.0%; the optimal PCEs of PCE10:FhPDI-IO2F, PCE10:FhPDI-IO2Cl, and PCE10:FhPDI-IC2Cl (1:1.1 wt %) devices were 5.2, 4.7, and 7.7%, respectively. The relatively high PCE of the PCE10:FhPDI-IC2F device resulted primarily from the higher absorption coefficients of the FhPDI-IC2F acceptor, lower energy loss, and more efficient charge transfer; the FhPDI-IC2F system experienced a lower degree of geminate recombination─as a result of improved delocalization of π-electrons along the acceptor unit─relative to that of the other three acceptors systems. Thus, altering the end groups of multichromophoric PDI units can increase the PCEs of devices incorporating PDI-derived materials and might also be a new pathway for the creation of other valuable fused-ring derivatives.
在本研究中,我们合成了四种新型A-DA'D-A受体(其中A和D分别代表受体和供体化学单元),这些受体以苝二酰亚胺单元(A')作为其核心结构,并在其端基(A)呈现出各种卤化和官能团取代模式。在这些受体中,通过将二噻吩吡咯(DTP)部分(D)与螺旋苝二酰亚胺二聚体(hPDI)融合以形成稠合-hPDI(FhPDI)核心,我们可以增加核心中的D/A'振子强度,从而提高分子内电荷转移(ICT)的强度,进而增强吸收带的强度。通过测试四种不同的端基单元─IC2F、IC2Cl、IO2F和IO2Cl─,这些受体分子各自表现出不同的光学特性。在所有这些体系中,将聚合物PCE10与受体FhPDI-IC2F(1:1.1重量%)共混的有机光伏器件具有9.0%的最高功率转换效率(PCE);PCE10:FhPDI-IO2F、PCE10:FhPDI-IO2Cl和PCE10:FhPDI-IC2Cl(1:1.1重量%)器件的最佳PCE分别为5.2%、4.7%和7.7%。PCE10:FhPDI-IC2F器件相对较高的PCE主要源于FhPDI-IC2F受体较高的吸收系数、较低的能量损失以及更有效的电荷转移;相对于其他三种受体体系,FhPDI-IC2F体系由于沿受体单元π电子离域的改善而经历了较低程度的双分子复合。因此,改变多发色团PDI单元的端基可以提高包含PDI衍生材料的器件的PCE,并且这也可能是创造其他有价值的稠环衍生物的新途径。