Suppr超能文献

基于侧链工程化小分子受体核心单元的高性能聚(3-己基噻吩)有机光伏器件

High-Performance Poly(3-hexyl thiophene)-Based Organic Photovoltaics with Side-Chain Engineering of Core Units of Small Molecule Acceptors.

作者信息

Chang Bin, Chen Chung-Hao, Hsueh Ting-Fang, Tan Shaun, Lin Yu-Che, Zhao Yepin, Tsai Bing-Shiun, Chu Ting-Yi, Chang Yu-Ning, Tsai Ching-En, Chen Cheng-Sheng, Wei Kung-Hwa

机构信息

Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

Department of Materials Science and Engineering, University of California─Los Angeles, Los Angeles, California 90095, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Nov 3. doi: 10.1021/acsami.3c13007.

Abstract

In this study, we synthesized a series of four large-band gap small molecule acceptors with side-chain engineering of the dithieno-pyrrolo-fused pentacyclic benzotriazole (BZTTP or Y1 core) or the fused-ring dithienothiophene-pyrrolobenzothiadiazole (TPBT or Y6 core) with difluoro-indene-dione (IO2F) or dichloro-indene-dione (IO2Cl) end groups to form Y1-IO2F, Y1-IO2Cl, Y6-IO2F, and Y6-IO2Cl acceptors, respectively, for blending with poly(3-hexyl thiophene) (P3HT) for bulk heterojunction organic photovoltaics. The complementary UV-vis absorption spectra of these small molecules and P3HT along with their offset energy bands allow broad absorption and effective electron transfer. Through synchrotron wide-angle X-ray scattering (WAXS) analyses and contact angle measurements, we found that the blend of the small molecule Y6-IO2F (having a TPBT core) and P3HT achieves an optimum morphology that balances their crystallinity and miscibility, among those of these four blends, leading to a substantial enhancement in the short-circuit current density and thus power conversion efficiency (PCE) in their devices. For example, the P3HT:Y6-IO2F (w/w: 1/1.2) device exhibited a champion PCE of 10.5% with a short current density () value of 15.9 mA/cm as compared to the P3HT:Y1-IO2F device having a PCE of 2.2% with a value of 5.7 mA/cm because of the higher Y6-IO2F (with TPBT core) molecular packing that facilitated carrier transport in the devices. The enhanced thermal stability exhibited by the devices incorporating Y6-IO2F and Y6-IO2Cl, as compared to that of Y1-IO2F and Y1-IO2Cl devices, is also due to the more planar TPBT core structure, while the photostability of devices incorporating Y6-IO2Cl and Y1-IO2Cl is better than that of devices incorporating Y6-IO2F and Y1-IO2F, owing to more photostable chemical structures. These results present an outstanding performance for P3HT-based organic solar cells. Moreover, these small molecule blends are processed with an environmentally friendly solvent tetrahydrofuran, demonstrating both the sustainability and commercial viability of these types of organic photovoltaics.

摘要

在本研究中,我们通过对二噻吩并吡咯稠合五环苯并三唑(BZTTP或Y1核)或稠环二噻吩并噻吩-吡咯并苯并噻二唑(TPBT或Y6核)进行侧链工程,合成了一系列四个大带隙小分子受体,并分别与二氟茚二酮(IO2F)或二氯茚二酮(IO2Cl)端基结合,形成Y1-IO2F、Y1-IO2Cl、Y6-IO2F和Y6-IO2Cl受体,用于与聚(3-己基噻吩)(P3HT)共混以制备体异质结有机光伏器件。这些小分子和P3HT互补的紫外-可见吸收光谱及其偏移能带实现了宽吸收和有效的电子转移。通过同步辐射广角X射线散射(WAXS)分析和接触角测量,我们发现小分子Y6-IO2F(具有TPBT核)与P3HT的共混物在这四种共混物中实现了平衡其结晶度和混溶性的最佳形态,从而导致其器件的短路电流密度大幅提高,进而提高了功率转换效率(PCE)。例如,P3HT:Y6-IO2F(重量比:1/1.2)器件的最佳PCE为10.5%,短路电流密度()值为15.9 mA/cm²,而P3HT:Y1-IO2F器件的PCE为2.2%,值为5.7 mA/cm²,这是因为Y6-IO2F(具有TPBT核)分子堆积更高,有利于器件中的载流子传输。与Y1-IO2F和Y1-IO2Cl器件相比,包含Y6-IO2F和Y6-IO2Cl的器件表现出的热稳定性增强,也是由于TPBT核结构更平面,而包含Y6-IO2Cl和Y1-IO2Cl的器件的光稳定性优于包含Y6-IO2F和Y1-IO2F的器件,这是因为化学结构更耐光。这些结果表明基于P3HT的有机太阳能电池具有出色的性能。此外,这些小分子共混物采用环境友好型溶剂四氢呋喃进行加工,证明了这类有机光伏器件的可持续性和商业可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验