Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
Neuroimage Clin. 2022;35:103121. doi: 10.1016/j.nicl.2022.103121. Epub 2022 Jul 18.
The purpose of this study was to develop and verify a convolutional neural network (CNN)-based deep-learning algorithm to identify tumor progression versus response by adding amide proton transfer-weighted (APTw) MRI data to structural MR images as the proposed model input. 145 scans with 2175 MR instances from 98 patients with malignant glioma (acquired between April 2010 and February 2018) were re-analyzed. An end-to-end classification framework based on a ResNet backbone was developed. The architecture includes a learnable subtraction layer and a hierarchical classification paradigm, and synthesizes information over multiple MR slices using a long short-term memory. Areas under the receiver-operating-characteristic curves (AUCs) were used to assess the impact of adding APTw MRI to structural MRI (Tw, Tw, FLAIR, and GdTw) on classification of tumor response vs. progression, both on the slice- and scan-level. With both APTw and structural MRI data, adding a learnable subtraction layer and a hierarchical classification paradigm to the backbone ResNet model improved the slice-level classification performance from an AUC of 0.85 to 0.90. Adding APTw data to structural MR images as input to our proposed CNN classification framework led to an increase in AUCs from 0.88 to 0.90 for the slice-level classification (P < 0.001), and from 0.85 to 0.90 for the scan-level classification (P < 0.05). Generated saliency maps highlighted the vast majority of lesions. Complementing structural MRI sequences with protein-based APTw MRI enhanced CNN-based classification of recurrent glioma at the slice and scan levels. Addition of APTw MRI to structural MRI sequences enhanced CNN-based classification of recurrent glioma at the slice and scan levels.
这项研究的目的是开发和验证一种基于卷积神经网络(CNN)的深度学习算法,通过将酰胺质子转移加权(APTw)MRI 数据添加到结构 MRI 图像作为所提出模型的输入,来识别肿瘤进展与反应。对 98 例恶性胶质瘤患者的 145 次扫描(2010 年 4 月至 2018 年 2 月采集)的 2175 个 MRI 实例进行了重新分析。开发了一个基于 ResNet 骨干的端到端分类框架。该架构包括一个可学习的减法层和一个分层分类范例,并使用长短期记忆(LSTM)在多个 MRI 切片上综合信息。使用接收器操作特征曲线(AUC)下的面积来评估将 APTw MRI 添加到结构 MRI(Tw、Tw、FLAIR 和 GdTw)对肿瘤反应与进展分类的影响,包括在切片和扫描级别。使用 APTw 和结构 MRI 数据,将可学习的减法层和分层分类范例添加到骨干 ResNet 模型中,提高了切片级别的分类性能,AUC 从 0.85 提高到 0.90。将 APTw 数据作为输入添加到我们提出的 CNN 分类框架中,导致切片级分类的 AUC 从 0.88 增加到 0.90(P<0.001),扫描级分类的 AUC 从 0.85 增加到 0.90(P<0.05)。生成的显著图突出显示了绝大多数病变。将基于蛋白质的 APTw MRI 与结构 MRI 序列相结合,增强了基于 CNN 的复发性脑胶质瘤的切片和扫描水平分类。在结构 MRI 序列中添加 APTw MRI 增强了基于 CNN 的复发性脑胶质瘤的切片和扫描水平分类。