Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentieva, Novosibirsk 630090, Russia.
Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia.
Biochim Biophys Acta Gen Subj. 2022 Nov;1866(11):130216. doi: 10.1016/j.bbagen.2022.130216. Epub 2022 Jul 26.
Apurinic/apyrimidinic (AP) endonuclease Nfo from Escherichia coli recognises AP sites in DNA and catalyses phosphodiester bond cleavage on the 5' side of AP sites and some damaged or undamaged nucleotides. Here, the mechanism of target nucleotide recognition by Nfo was analysed by pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer detection of DNA conformational changes during DNA binding. The efficiency of endonucleolytic cleavage of a target nucleotide in model DNA substrates was ranked as (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran [F-site] > 5,6-dihydro-2'-deoxyuridine > α-anomer of 2'-deoxyadenosine >2'-deoxyuridine > undamaged DNA. Real-time conformational changes of DNA during interaction with Nfo revealed an increase of distances between duplex ends during the formation of the initial enzyme-substrate complex. The use of rigid-linker spin-labelled DNA duplexes in DEER measurements indicated that double-helix bending and unwinding by the target nucleotide itself is one of the key factors responsible for indiscriminate recognition of a target nucleotide by Nfo. The results for the first time show that AP endonucleases from different structural families utilise a common strategy of damage recognition, which globally may be integrated with the mechanism of searching for specific sites in DNA by other enzymes.
来自大肠杆菌的无嘌呤/无嘧啶(AP)内切核酸酶 Nfo 识别 DNA 中的 AP 位点,并催化 AP 位点和一些受损或未受损核苷酸 5'侧的磷酸二酯键断裂。在这里,通过脉冲电子-电子双共振(PELDOR,也称为 DEER)光谱和预稳态动力学分析,分析了 Nfo 靶核苷酸识别的机制,利用 Förster 共振能量转移检测 DNA 结合过程中 DNA 构象变化。在模型 DNA 底物中,靶核苷酸的内切核酸酶切割效率的排序为(2R,3S)-2-(羟甲基)-3-羟四氢呋喃[F-位点]>5,6-二氢-2'-脱氧尿嘧啶>α-异构体 2'-脱氧腺苷>2'-脱氧尿嘧啶>未受损的 DNA。在与 Nfo 相互作用过程中 DNA 的实时构象变化揭示了在初始酶-底物复合物形成过程中双链末端之间距离的增加。在 DEER 测量中使用刚性接头标记的 DNA 双链体表明,靶核苷酸本身的双螺旋弯曲和展开是 Nfo 无差别识别靶核苷酸的关键因素之一。这些结果首次表明,来自不同结构家族的 AP 内切核酸酶利用了一种共同的损伤识别策略,这种策略可能与其他酶在 DNA 中搜索特定位点的机制相结合。