Suppr超能文献

人类脱嘌呤/脱嘧啶核酸内切酶 1(APE1)通过活性位点可塑性识别受损核苷酸的作用。

The Role of Active-Site Plasticity in Damaged-Nucleotide Recognition by Human Apurinic/Apyrimidinic Endonuclease APE1.

机构信息

Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia.

Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia.

出版信息

Molecules. 2020 Aug 28;25(17):3940. doi: 10.3390/molecules25173940.

Abstract

Human apurinic/apyrimidinic (AP) endonuclease APE1 hydrolyzes phosphodiester bonds on the 5' side of an AP-site, and some damaged nucleotides such as 1,N6-ethenoadenosine (εA), α-adenosine (αA), and 5,6-dihydrouridine (DHU). To investigate the mechanism behind the broad substrate specificity of APE1, we analyzed pre-steady-state kinetics of conformational changes in DNA and the enzyme during DNA binding and damage recognition. Molecular dynamics simulations of APE1 complexes with one of damaged DNA duplexes containing εA, αA, DHU, or an F-site (a stable analog of an AP-site) revealed the involvement of residues Asn229, Thr233, and Glu236 in the mechanism of DNA lesion recognition. The results suggested that processing of an AP-site proceeds faster in comparison with nucleotide incision repair substrates because eversion of a small abasic site and its insertion into the active site do not include any unfavorable interactions, whereas the insertion of any target nucleotide containing a damaged base into the APE1 active site is sterically hindered. Destabilization of the α-helix containing Thr233 and Glu236 via a loss of the interaction between these residues increased the plasticity of the damaged-nucleotide binding pocket and the ability to accommodate structurally different damaged nucleotides. Nonetheless, the optimal location of εA or αA in the binding pocket does not correspond to the optimal conformation of catalytic amino acid residues, thereby significantly decreasing the cleavage efficacy for these substrates.

摘要

人类嘌呤糖苷酶/嘧啶糖苷酶(AP)内切酶 APE1 可水解 AP 位点 5'侧的磷酸二酯键,以及一些受损核苷酸,如 1,N6-烯腺嘌呤(εA)、α-腺嘌呤(αA)和 5,6-二氢尿嘧啶(DHU)。为了研究 APE1 广泛的底物特异性背后的机制,我们分析了 DNA 结合和损伤识别过程中酶与 DNA 构象变化的预稳态动力学。APE1 与含有 εA、αA、DHU 或 F 位点(AP 位点的稳定类似物)的受损 DNA 双链复合物的分子动力学模拟揭示了残基 Asn229、Thr233 和 Glu236 参与了 DNA 损伤识别机制。结果表明,与核苷酸切口修复底物相比,AP 位点的处理速度更快,因为小的无碱基位点的外翻及其插入活性位点不包括任何不利的相互作用,而任何含有受损碱基的目标核苷酸插入 APE1 活性位点都受到空间位阻的阻碍。通过 Thr233 和 Glu236 之间相互作用的丧失使包含 Thr233 和 Glu236 的α-螺旋不稳定,增加了损伤核苷酸结合口袋的可塑性和容纳结构不同的损伤核苷酸的能力。尽管如此,εA 或 αA 在结合口袋中的最佳位置并不对应于催化氨基酸残基的最佳构象,从而显著降低了这些底物的切割效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9913/7504742/51e1f385483b/molecules-25-03940-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验