Suppr超能文献

注意和表现效度在 ADHD 临床评估成人样本中的表现:使用机器学习算法的复制研究。

Symptom and performance validity in samples of adults at clinical evaluation of ADHD: a replication study using machine learning algorithms.

机构信息

Department of Psychology, FOM University of Applied Sciences, Siegen, Germany.

Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Groningen, The Netherlands.

出版信息

J Clin Exp Neuropsychol. 2022 Apr;44(3):171-184. doi: 10.1080/13803395.2022.2105821. Epub 2022 Jul 29.

Abstract

INTRODUCTION

Research has shown non-trivial base rates of noncredible symptom report and performance in the clinical evaluation of attention-deficit/hyperactivity disorder (ADHD) in adulthood. The goal of this study is to estimate and replicate base rates of symptom and performance validity test failure in the clinical evaluation of adult ADHD and derive prediction models based on routine clinical measures.

METHODS

This study reuses data of a previous publication of 196 adults seeking ADHD assessment and replicates the findings on an independent sample of 700 adults recruited in the same referral context. Measures of symptom and performance validity (one SVT, two PVTs) were applied to estimate base rates. Prediction models were developed using machine learning.

RESULTS

Both samples showed substantial rates of noncredible symptom report (one SVT failure: 35.7% - 36.6%), noncredible test performance (one PVT failure: 32.1% - 49.3%; two PVT failures: 18.9% - 27.3%), or both (each one SVT and PVT failure: 13.3% - 22.4%; one SVT and two PVT failures: 9.7% - 13.7%). Machine learning algorithms resulted in generally moderate to weak prediction models, with advantages of the reused sample compared to the independent replication sample. Associations between measures of symptom and performance validity were negligible to small.

CONCLUSIONS

This study highlights the necessity to include measures of symptom and performance validity in the clinical evaluation of adult ADHD. Further, this study demonstrates the difficulty to characterize the group failing symptom or performance validity assessment.

摘要

简介

研究表明,在成人注意力缺陷多动障碍(ADHD)的临床评估中,非真实性症状报告和表现的基础率相当高。本研究的目的是估计和复制成人 ADHD 临床评估中症状和表现有效性测试失败的基础率,并基于常规临床测量方法得出预测模型。

方法

本研究重复使用了先前一项关于 196 名寻求 ADHD 评估的成年人的研究数据,并在同一转诊背景下招募的 700 名成年人的独立样本中复制了这些发现。使用症状和表现有效性测试(一种 SVT,两种 PVT)来估计基础率。使用机器学习开发预测模型。

结果

两个样本均显示出相当高的非真实性症状报告率(一种 SVT 失败:35.7%-36.6%)、非真实性测试表现率(一种 PVT 失败:32.1%-49.3%;两种 PVT 失败:18.9%-27.3%)或两者(每种 SVT 和 PVT 失败:13.3%-22.4%;一种 SVT 和两种 PVT 失败:9.7%-13.7%)。机器学习算法得出的预测模型通常为中等至弱等,与独立复制样本相比,重复使用样本具有优势。症状和表现有效性测试之间的相关性很小或几乎没有。

结论

本研究强调了在成人 ADHD 的临床评估中纳入症状和表现有效性测试的必要性。此外,本研究还表明,难以确定表现出症状或表现有效性评估失败的人群特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验