State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
Water Res. 2022 Aug 15;222:118887. doi: 10.1016/j.watres.2022.118887. Epub 2022 Jul 21.
In this study, mechanically sulfidated microscale zero valent iron (S-ZVI) was found to effectively activate the peracetic acid (PAA) with a result of almost complete degradation of six micropollutants within 10 min under neutral conditions, and > 95% sulfamethoxazole (SMX) removal after six cycles. Reactive oxidized species (ROS) including HO•, carbon-centered radicals, and Fe(IV) were generated in the S-ZVI/PAA system, while HO• was the main contributor towards micropollutants degradation. This study clearly revealed that enhancement of the electron donating ability of ZVI by the formed conductive iron sulfides was crucial for promoted Fe(II) generation and subsequent PAA activation over several cycles, rather than the ability of sulfides to reduce Fe(III) for Fe(II) regeneration as reported previously. Interestingly, it's discovered that co-existence of Fe(III) would dramatically improve the contaminants removal efficiency of the S-ZVI/PAA system; transform the surfaced Fe(II) dominated ROS generation process to aqueous Fe(II) one; enhance the tolerance of the proposed system to water matrix. The promoting effect of predosed Fe(III) on PAA activation by S-ZVI should be mainly associated with: the greater ability of Fe(III) than HO to accept electron from Fe for obtaining more active sites; slower Fe consumption and solid sulfur species release for elevated electron utilization efficiency and PAA activation. Considering the convenient and cost-effective access of Fe(III), the decrease of acute toxicity of treated SMX, excellent stability and good removal of various micropollutants fully demonstrate the superiority of S-ZVI/PAA system for practical application.
在这项研究中,发现机械硫化的微尺度零价铁 (S-ZVI) 可有效激活过乙酸 (PAA),在中性条件下,6 种微污染物在 10 分钟内几乎完全降解,经过 6 个循环后,磺胺甲恶唑 (SMX) 的去除率超过 95%。S-ZVI/PAA 体系中生成了活性氧化物种 (ROS),包括 HO•、碳中心自由基和 Fe(IV),而 HO•是微污染物降解的主要贡献者。这项研究清楚地表明,通过形成的导电铁硫化物增强 ZVI 的供电子能力对于促进 Fe(II)的生成和随后的 PAA 活化在几个循环中是至关重要的,而不是如先前报道的那样,硫化物还原 Fe(III)以再生 Fe(II)的能力。有趣的是,发现共存的 Fe(III)会显著提高 S-ZVI/PAA 体系的污染物去除效率;将表面主导的 Fe(II)ROS 生成过程转变为水相 Fe(II)过程;增强了所提出的系统对水基质的耐受性。预投加的 Fe(III)对 S-ZVI 激活 PAA 的促进作用主要与以下因素有关:Fe(III)比 HO•更能从 Fe 中接受电子,从而获得更多的活性位点;Fe 的消耗和固体硫物种的释放较慢,提高了电子利用效率和 PAA 的激活。考虑到 Fe(III)的便捷和成本效益,处理后的 SMX 急性毒性的降低,良好的稳定性和各种微污染物的去除充分证明了 S-ZVI/PAA 系统在实际应用中的优越性。