Sciscenko Iván, Vione Davide, Minella Marco
Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, plaza Ferrándiz y Carbonell S/N, 03801, Alcoy, Spain.
Department of Chemistry, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy.
Heliyon. 2024 Feb 24;10(5):e27036. doi: 10.1016/j.heliyon.2024.e27036. eCollection 2024 Mar 15.
The exacerbated global water scarcity and stricter water directives are leading to an increment in the recycled water use, requiring the development of new cost-effective advanced water treatments to provide safe water to the population. In this sense, peracetic acid (PAA, CHC(O)OOH) is an environmentally friendly disinfectant with the potential to challenge the dominance of chlorine in large wastewater treatment plants in the near future. PAA can be used as an alternative oxidant to HO to carry out the Fenton reaction, and it has recently been proven as more effective than HO towards emerging pollutants degradation at circumneutral pH values and in the presence of anions. PAA activation by homogeneous and heterogeneous iron-based materials generates - besides HO and FeO - more selective CHC(O)O and CHC(O)OO radicals, slightly scavenged by typical HO quenchers (e.g., bicarbonates), which extends PAA use to complex water matrices. This is reflected in an exponential progress of iron-PAA publications during the last few years. Although some reviews of PAA general properties and uses in water treatment were recently published, there is no account on the research and environmental applications of PAA activation by Fe-based materials, in spite of its gratifying progress. In view of these statements, here we provide a holistic review of the types of iron-based PAA activation systems and analyse the diverse iron compounds employed to date (e.g., ferrous and ferric salts, ferrate(VI), spinel ferrites), the use of external ferric reducing/chelating agents (e.g., picolinic acid, l-cysteine, boron) and of UV-visible irradiation systems, analysing the mechanisms involved in each case. Comparison of PAA activation by iron vs. other transition metals (particularly cobalt) is also discussed. This work aims at providing a thorough understanding of the Fe/PAA-based processes, facilitating useful insights into its advantages and limitations, overlooked issues, and prospects, leading to its popularisation and know-how increment.
全球水资源短缺加剧以及水指令愈发严格,使得再生水的使用量不断增加,这就需要开发新的具有成本效益的先进水处理技术,以便为民众提供安全的水。从这个意义上讲,过氧乙酸(PAA,CHC(O)OOH)是一种环境友好型消毒剂,有望在不久的将来挑战氯在大型污水处理厂中的主导地位。PAA 可以用作替代 HO 来进行芬顿反应的氧化剂,并且最近已被证明,在环境中性 pH 值和存在阴离子的情况下,它在降解新兴污染物方面比 HO 更有效。通过均相和非均相铁基材料对 PAA 进行活化,除了产生 HO 和 FeO 之外,还会生成更具选择性的 CHC(O)O 和 CHC(O)OO 自由基,这些自由基只会被典型的 HO 猝灭剂(如碳酸氢盐)轻微清除,这使得 PAA 能够应用于复杂的水基质。这反映在过去几年中关于铁 - PAA 的出版物呈指数级增长。尽管最近发表了一些关于 PAA 的一般性质及其在水处理中的应用的综述,但尽管铁基材料活化 PAA 取得了令人满意的进展,却没有关于其研究和环境应用的报道。鉴于上述情况,在此我们对铁基 PAA 活化系统的类型进行全面综述,并分析迄今为止所使用的各种铁化合物(如亚铁盐和铁盐、高铁酸盐(VI)、尖晶石铁氧体)、外部铁还原/螯合剂(如吡啶甲酸、L - 半胱氨酸、硼)以及紫外 - 可见辐射系统的使用情况,分析每种情况下所涉及的机制。还讨论了铁与其他过渡金属(特别是钴)对 PAA 活化的比较。这项工作旨在全面了解基于 Fe/PAA 的工艺,有助于深入了解其优点和局限性、被忽视的问题以及前景,从而促进其推广并增加相关技术知识。