Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
Sci Total Environ. 2022 Nov 20;848:157660. doi: 10.1016/j.scitotenv.2022.157660. Epub 2022 Jul 28.
Nitrogen (N) enrichment poses a severe threat to ecosystem multifunctionality. Given increasing variability of ecosystem functioning and uncertainty under global change, a pressing question is how N enrichment affects temporal stability of multiple functions (i.e., 'multifunctional stability'). Whether the responses of multifunctional stability to N enrichment change with external disturbance, such as grasslands with different degradation statuses, remains unclear. We conducted multi-level N enrichment experiments at four grassland sites with no, moderate, severe, and extreme degradation statuses in Inner Mongolia, China. We measured temporal stability of five functions, comprising aboveground net primary productivity, soil total carbon (C) and N storage, and soil microbial biomass C and N storage, to explore how multifunctional stability responded to N enrichment. The temporal stability of most individual functions and multifunctional stability decreased sharply when N input exceeded 20 g N m y in the non-, moderately, and severely degraded grasslands, whereas the threshold declined to 10 g N m y in the extremely degraded grassland. The relative importance of plant and soil microbes in regulating multifunctional stability varied along the degradation gradient. In particular, plant species asynchrony and species richness showed strong positive relationships with multifunctional stability in the non- and moderately degraded grasslands, whereas soil microbial diversity, especially bacterial diversity, was positively associated with multifunctional stability in the severely and extremely degraded grasslands. Overall, our findings identified a critical threshold for N-induced multifunctional stability and called for context-specific biodiversity conservation strategies to buffer the negative effect of N enrichment on grassland ecosystem stability.
氮(N)富集对生态系统多功能性构成了严重威胁。考虑到生态系统功能的可变性增加和全球变化下的不确定性,一个紧迫的问题是 N 富集如何影响多种功能的时间稳定性(即“多功能稳定性”)。在不同退化状况的草地等外部干扰下,多功能稳定性对 N 富集的响应是否会发生变化,目前尚不清楚。我们在中国内蒙古的四个草地地点进行了多层次的 N 富集实验,这些地点的退化状况分别为无、中度、严重和极度。我们测量了五个功能的时间稳定性,包括地上净初级生产力、土壤总碳(C)和 N 储量以及土壤微生物生物量 C 和 N 储量,以探讨多功能稳定性如何响应 N 富集。当 N 输入超过无、中度和严重退化草地中的 20 g N m y 时,大多数单个功能和多功能稳定性的时间稳定性急剧下降,而在极度退化的草地中,阈值下降到 10 g N m y。植物和土壤微生物在调节多功能稳定性方面的相对重要性沿退化梯度而变化。特别是,植物物种的不同步性和物种丰富度与无和中度退化草地中的多功能稳定性呈强烈正相关,而土壤微生物多样性,尤其是细菌多样性,与严重和极度退化草地中的多功能稳定性呈正相关。总体而言,我们的研究结果确定了 N 引起的多功能稳定性的关键阈值,并呼吁采取特定背景的生物多样性保护策略来缓冲 N 富集对草地生态系统稳定性的负面影响。