Lu Xiaoxiao, Shang Chenyao, Li Lulu, Chen Rongjun, Fu Bina, Xu Xin, Zhang Dong H
State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
Department of Chemistry, Fudan University, Shanghai, 200433, China.
Nat Commun. 2022 Jul 30;13(1):4427. doi: 10.1038/s41467-022-32191-6.
Base-induced elimination (E2) and bimolecular nucleophilic substitution (S2) reactions are of significant importance in physical organic chemistry. The textbook example of the retardation of S2 reactivity by bulky alkyl substitution is widely accepted based on the static analysis of molecular structure and steric environment. However, the direct dynamical evidence of the steric hindrance of S2 from experiment or theory remains rare. Here, we report an unprecedented full-dimensional (39-dimensional) machine learning-based potential energy surface for the 15-atom F + (CH)CI reaction, facilitating the reliable and efficient reaction dynamics simulations that can reproduce well the experimental outcomes and examine associated atomic-molecular level mechanisms. Moreover, we found surprisingly high "intrinsic" reactivity of S2 when the E2 pathway is completely blocked, indicating the reaction that intends to proceed via E2 transits to S2 instead, due to a shared pre-reaction minimum. This finding indicates that the competing factor of E2 but not the steric hindrance determines the small reactivity of S2 for the F + (CH)CI reaction. Our study provides new insight into the dynamical origin that determines the intrinsic reactivity in gas-phase organic chemistry.
碱诱导消除(E2)反应和双分子亲核取代(S2)反应在物理有机化学中具有重要意义。基于分子结构和空间环境的静态分析,庞大烷基取代对S2反应活性的阻碍这一教科书式的例子已被广泛接受。然而,来自实验或理论的S2空间位阻的直接动力学证据仍然很少。在此,我们报告了一个前所未有的基于机器学习的15原子F + (CH)CI反应的全维(39维)势能面,这有助于进行可靠且高效的反应动力学模拟,能够很好地重现实验结果并研究相关的原子 - 分子水平机制。此外,我们惊人地发现,当E2途径完全受阻时,S2具有很高的“本征”反应活性,这表明由于存在一个共同的反应前最小值,原本打算通过E2进行的反应转而通过S2进行。这一发现表明,决定F + (CH)CI反应中S2反应活性小的因素是E2的竞争因素,而非空间位阻。我们的研究为气相有机化学中决定本征反应活性的动力学起源提供了新的见解。