Suppr超能文献

糖毒性导致β细胞衰竭的原因是 ChREBPβ 的适应性正反馈产生。

Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure.

机构信息

Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA.

Pharmacologic Sciences Department, Stony Brook University, Stony Brook, NY, USA.

出版信息

Nat Commun. 2022 Jul 30;13(1):4423. doi: 10.1038/s41467-022-32162-x.

Abstract

Preservation and expansion of β-cell mass is a therapeutic goal for diabetes. Here we show that the hyperactive isoform of carbohydrate response-element binding protein (ChREBPβ) is a nuclear effector of hyperglycemic stress occurring in β-cells in response to prolonged glucose exposure, high-fat diet, and diabetes. We show that transient positive feedback induction of ChREBPβ is necessary for adaptive β-cell expansion in response to metabolic challenges. Conversely, chronic excessive β-cell-specific overexpression of ChREBPβ results in loss of β-cell identity, apoptosis, loss of β-cell mass, and diabetes. Furthermore, β-cell "glucolipotoxicity" can be prevented by deletion of ChREBPβ. Moreover, ChREBPβ-mediated cell death is mitigated by overexpression of the alternate CHREBP gene product, ChREBPα, or by activation of the antioxidant Nrf2 pathway in rodent and human β-cells. We conclude that ChREBPβ, whether adaptive or maladaptive, is an important determinant of β-cell fate and a potential target for the preservation of β-cell mass in diabetes.

摘要

β 细胞质量的保存和扩增是糖尿病的治疗目标。在这里,我们表明,碳水化合物反应元件结合蛋白(ChREBPβ)的高活性异构体是β 细胞中发生的高血糖应激的核效应因子,这种应激是对长期葡萄糖暴露、高脂肪饮食和糖尿病的反应。我们表明,ChREBPβ 的短暂正反馈诱导对于适应代谢挑战的β 细胞扩增是必要的。相反,慢性过度的β 细胞特异性过表达 ChREBPβ 会导致β 细胞丧失身份、凋亡、β 细胞质量丧失和糖尿病。此外,ChREBPβ 介导的细胞死亡可以通过 ChREBPβ 的缺失来预防。此外,在啮齿动物和人类β细胞中,ChREBPα 的替代 CHREBP 基因产物的过表达或抗氧化 Nrf2 途径的激活可以减轻 ChREBPβ 介导的细胞死亡。我们得出结论,ChREBPβ 无论是适应性的还是失调性的,都是β 细胞命运的重要决定因素,也是糖尿病中保存β 细胞质量的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c04/9339008/187ba665b29f/41467_2022_32162_Fig1_HTML.jpg

相似文献

1
Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure.
Nat Commun. 2022 Jul 30;13(1):4423. doi: 10.1038/s41467-022-32162-x.
2
T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation.
Mol Metab. 2022 Dec;66:101646. doi: 10.1016/j.molmet.2022.101646. Epub 2022 Nov 29.
3
Induction of the ChREBPβ Isoform Is Essential for Glucose-Stimulated β-Cell Proliferation.
Diabetes. 2015 Dec;64(12):4158-70. doi: 10.2337/db15-0239. Epub 2015 Sep 17.
4
Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation.
Diabetes. 2018 Aug;67(8):1561-1575. doi: 10.2337/db17-0943. Epub 2018 May 15.
5
Tissue Specific Effects of Dietary Carbohydrates and Obesity on ChREBPα and ChREBPβ Expression.
Lipids. 2016 Jan;51(1):95-104. doi: 10.1007/s11745-015-4090-0. Epub 2015 Nov 2.
6
An acetylated Lysine Residue of Its Low-glucose Inhibitory Domain Controls Activity and Protein Interactions of ChREBP.
J Mol Biol. 2025 Sep 1;437(17):169189. doi: 10.1016/j.jmb.2025.169189. Epub 2025 May 6.
9
Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity.
Nat Commun. 2025 Mar 2;16(1):2110. doi: 10.1038/s41467-025-57241-7.
10
Hepatic ChREBP reciprocally modulates systemic insulin sensitivity in NAFLD.
J Biol Chem. 2025 Apr 29;301(6):108556. doi: 10.1016/j.jbc.2025.108556.

引用本文的文献

1
Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity.
Nat Commun. 2025 Mar 2;16(1):2110. doi: 10.1038/s41467-025-57241-7.
4
Disruption of perinatal myeloid niches impacts the aging clock of pancreatic β cells.
iScience. 2024 Aug 7;27(9):110644. doi: 10.1016/j.isci.2024.110644. eCollection 2024 Sep 20.
5
Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment.
Curr Issues Mol Biol. 2024 Jul 18;46(7):7621-7667. doi: 10.3390/cimb46070453.
6
Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity.
bioRxiv. 2024 Nov 17:2024.02.16.580675. doi: 10.1101/2024.02.16.580675.
7
Identify Diabetes-related Targets based on ForgeNet_GPC.
Curr Comput Aided Drug Des. 2024;20(7):1042-1054. doi: 10.2174/0115734099258183230929173855.
8
Metabolite profiles of diabetes mellitus and response to intervention in anti-hyperglycemic drugs.
Front Endocrinol (Lausanne). 2023 Oct 31;14:1237934. doi: 10.3389/fendo.2023.1237934. eCollection 2023.
9
Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents.
Int J Mol Sci. 2023 Aug 29;24(17):13381. doi: 10.3390/ijms241713381.
10
The role of ChREBP in carbohydrate sensing and NAFLD development.
Nat Rev Endocrinol. 2023 Jun;19(6):336-349. doi: 10.1038/s41574-023-00809-4. Epub 2023 Apr 13.

本文引用的文献

1
Adaptive and maladaptive roles for ChREBP in the liver and pancreatic islets.
J Biol Chem. 2021 Jan-Jun;296:100623. doi: 10.1016/j.jbc.2021.100623. Epub 2021 Apr 2.
3
Partitioning of MLX-Family Transcription Factors to Lipid Droplets Regulates Metabolic Gene Expression.
Mol Cell. 2020 Mar 19;77(6):1251-1264.e9. doi: 10.1016/j.molcel.2020.01.014. Epub 2020 Feb 4.
4
Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans.
Nat Med. 2019 Nov;25(11):1739-1747. doi: 10.1038/s41591-019-0610-4. Epub 2019 Nov 7.
5
ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity.
BioData Min. 2019 Aug 6;12:16. doi: 10.1186/s13040-019-0204-1. eCollection 2019.
7
HCF-1 Regulates De Novo Lipogenesis through a Nutrient-Sensitive Complex with ChREBP.
Mol Cell. 2019 Jul 25;75(2):357-371.e7. doi: 10.1016/j.molcel.2019.05.019. Epub 2019 Jun 18.
8
DNA Damage Does Not Cause BrdU Labeling of Mouse or Human β-Cells.
Diabetes. 2019 May;68(5):975-987. doi: 10.2337/db18-0761. Epub 2019 Mar 4.
9
Combined Inhibition of DYRK1A, SMAD, and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells.
Cell Metab. 2019 Mar 5;29(3):638-652.e5. doi: 10.1016/j.cmet.2018.12.005. Epub 2018 Dec 20.
10
Aging of Antiviral CD8 Memory T Cells Fosters Increased Survival, Metabolic Adaptations, and Lymphoid Tissue Homing.
J Immunol. 2019 Jan 15;202(2):460-475. doi: 10.4049/jimmunol.1801277. Epub 2018 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验