Suppr超能文献

基于机器学习开发一种增强非甾体抗炎药奥沙普秦溶解度的新型稳健方法。

Development a novel robust method to enhance the solubility of Oxaprozin as nonsteroidal anti-inflammatory drug based on machine-learning.

机构信息

Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box. 173, Al-Kharj, 11942, Saudi Arabia.

Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, 12613, Egypt.

出版信息

Sci Rep. 2022 Jul 30;12(1):13138. doi: 10.1038/s41598-022-17440-4.

Abstract

Accurate specification of the drugs' solubility is known as an important activity to appropriately manage the supercritical impregnation process. Over the last decades, the application of supercritical fluids (SCFs), mainly CO, has found great interest as a promising solution to dominate the limitations of traditional methods including high toxicity, difficulty of control, high expense and low stability. Oxaprozin is an efficient off-patent nonsteroidal anti-inflammatory drug (NSAID), which is being extensively used for the pain management of patients suffering from chronic musculoskeletal disorders such as rheumatoid arthritis. In this paper, the prominent purpose of the authors is to predict and consequently optimize the solubility of Oxaprozin inside the COSCF. To do this, the authors employed two basic models and improved them with the Adaboost ensemble method. The base models include Gaussian process regression (GPR) and decision tree (DT). We optimized and evaluated the hyper-parameters of them using standard metrics. Boosted DT has an MAE error rate, an R2-score, and an MAPE of 6.806E-05, 0.980, and 4.511E-01, respectively. Also, boosted GPR has an R2-score of 0.998 and its MAPE error is 3.929E-02, and with MAE it has an error rate of 5.024E-06. So, boosted GPR was chosen as the best model, and the best values were: (T = 3.38E + 02, P = 4.0E + 02, Solubility = 0.001241).

摘要

准确描述药物的溶解度是适当管理超临界浸渍过程的重要活动。在过去几十年中,超临界流体(SCF)的应用,主要是 CO,作为克服传统方法的局限性的有前途的解决方案引起了极大的兴趣,这些传统方法包括高毒性、难以控制、高成本和低稳定性。奥沙普秦是一种高效的非专利非甾体抗炎药(NSAID),广泛用于治疗患有慢性肌肉骨骼疾病(如类风湿性关节炎)的患者的疼痛管理。在本文中,作者的主要目的是预测并优化奥沙普秦在 COSCF 中的溶解度。为此,作者使用了两种基本模型,并通过 Adaboost 集成方法对其进行了改进。基础模型包括高斯过程回归(GPR)和决策树(DT)。我们使用标准指标优化和评估了它们的超参数。提升 DT 的 MAE 误差率、R2 分数和 MAPE 分别为 6.806E-05、0.980 和 4.511E-01。此外,提升 GPR 的 R2 分数为 0.998,其 MAPE 误差为 3.929E-02,MAE 误差率为 5.024E-06。因此,提升 GPR 被选为最佳模型,最佳值为:(T = 3.38E + 02,P = 4.0E + 02,溶解度 = 0.001241)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0763/9338996/19df36a92aee/41598_2022_17440_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验