Suppr超能文献

通过协作神经动力学优化进行稀疏信号重构。

Sparse signal reconstruction via collaborative neurodynamic optimization.

机构信息

College of Electronic and Information Engineering and Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing 400715, China.

Department of Computer Science and School of Data Science, City University of Hong Kong, Kowloon, Hong Kong.

出版信息

Neural Netw. 2022 Oct;154:255-269. doi: 10.1016/j.neunet.2022.07.018. Epub 2022 Jul 19.

Abstract

In this paper, we formulate a mixed-integer problem for sparse signal reconstruction and reformulate it as a global optimization problem with a surrogate objective function subject to underdetermined linear equations. We propose a sparse signal reconstruction method based on collaborative neurodynamic optimization with multiple recurrent neural networks for scattered searches and a particle swarm optimization rule for repeated repositioning. We elaborate on experimental results to demonstrate the outperformance of the proposed approach against ten state-of-the-art algorithms for sparse signal reconstruction.

摘要

在本文中,我们针对稀疏信号重建问题建立了一个混合整数问题,并将其重新表述为一个带有替代目标函数的全局优化问题,同时满足欠定线性方程组的约束条件。我们提出了一种基于多递归神经网络的协同神经动力学优化稀疏信号重建方法,用于分散搜索,以及基于粒子群优化规则的重复定位。我们详细阐述了实验结果,以证明与稀疏信号重建的十种最先进算法相比,所提出的方法具有优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验