Division of Hospital Medicine.
Department of Pediatrics, University of Cincinnati College of Medicine.
Hosp Pediatr. 2022 Aug 1;12(8):689-695. doi: 10.1542/hpeds.2021-006121.
A high level of caregiver adverse childhood experiences (ACEs) and/or low resilience is associated with poor outcomes for both caregivers and their children after hospital discharge. It is unknown if sociodemographic or area-based measures (ie, "geomarkers") can inform the assessment of caregiver ACEs or resilience. Our objective was to determine if caregiver ACEs or resilience can be identified by using any combinations of sociodemographic measures, geomarkers, and/or caregiver-reported household characteristics.
Eligible participants for this cohort study were English-speaking caregivers of children hospitalized on a hospital medicine team. Caregivers completed the ACE questionnaire, Brief Resilience Scale, and strain surveys. Exposures included sociodemographic characteristics available in the electronic health record (EHR), geomarkers tied to a patient's geocoded home address, and household characteristics that are not present in the EHR (eg, income). Primary outcomes were a high caregiver ACE score (≥4) and/or a low BRS Score (<3).
Of the 1272 included caregivers, 543 reported high ACE or low resilience, and 63 reported both. We developed the following regression models: sociodemographic variables in EHR (Model 1), EHR sociodemographics and geomarkers (Model 2), and EHR sociodemographics, geomarkers, and additional survey-reported household characteristics (Model 3). The ability of models to identify the presence of caregiver adversity was poor (all areas under receiver operating characteristics curves were <0.65).
Models using EHR data, geomarkers, and household-level characteristics to identify caregiver adversity had limited utility. Directly asking questions to caregivers or integrating risk and strength assessments during pediatric hospitalization may be a better approach to identifying caregiver adversity.
照料者经历过较高水平的不良童年经历(ACEs)和/或低弹性,这与他们在出院后照顾者及其子女的预后较差有关。目前尚不清楚社会人口学或基于区域的措施(即“地理标记”)是否可以为评估照料者 ACEs 或弹性提供信息。我们的目的是确定是否可以通过使用任何组合的社会人口学措施、地理标记和/或照料者报告的家庭特征来识别照料者 ACEs 或弹性。
本队列研究的合格参与者为在医院内科团队住院的儿童的英语使用者照料者。照料者完成 ACE 问卷、简要韧性量表和压力调查。暴露因素包括电子健康记录(EHR)中可用的社会人口学特征、与患者地理编码家庭住址相关的地理标记以及 EHR 中不存在的家庭特征(例如收入)。主要结局是照料者 ACE 评分高(≥4)和/或 BRS 评分低(<3)。
在纳入的 1272 名照料者中,有 543 名报告 ACE 较高或弹性较低,63 名报告同时存在这两种情况。我们建立了以下回归模型:EHR 中的社会人口学变量(模型 1)、EHR 社会人口学和地理标记(模型 2)以及 EHR 社会人口学、地理标记和额外的调查报告的家庭特征(模型 3)。模型识别照料者逆境的能力较差(所有受试者工作特征曲线下面积均<0.65)。
使用 EHR 数据、地理标记和家庭层面特征来识别照料者逆境的模型效果有限。直接向照料者提问或在儿科住院期间整合风险和强度评估可能是识别照料者逆境的更好方法。