Ghanbari Saeed, Shahmansouri Amir Ali, Akbarzadeh Bengar Habib, Jafari Abouzar
Department of Civil Engineering, University of Mazandaran, Babolsar, Iran.
University of Michigan and Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China.
Environ Sci Pollut Res Int. 2023 Jan;30(1):1096-1115. doi: 10.1007/s11356-022-21987-0. Epub 2022 Aug 1.
Promoting the use of agricultural wastes/byproducts in concrete production can significantly reduce environmental effects and contribute to sustainable development. Several experimental investigations on such concrete's compressive strength ([Formula: see text]) and behavior have been done. The results of 229 concrete samples made by oil palm shell ([Formula: see text]) as a lightweight aggregate ([Formula: see text]) were used to develop models for predicting the [Formula: see text] of the high-strength lightweight aggregate concrete ([Formula: see text]). To this end, gene expression programming ([Formula: see text]), adaptive neuro-fuzzy inference system ([Formula: see text]), artificial neural network ([Formula: see text]), and multiple linear regression ([Formula: see text]) are employed as machine learning ([Formula: see text]) and regression methods. The water-to-binder ([Formula: see text]) ratio, ordinary Portland cement ([Formula: see text]), fly ash ([Formula: see text]), silica fume ([Formula: see text]), fine aggregate ([Formula: see text]), natural coarse aggregate ([Formula: see text]), [Formula: see text], superplasticizer ([Formula: see text]) contents, and specimen age are among the nine input parameters used in the developed models. The results show that all [Formula: see text]-based models efficiently predict the [Formula: see text]'s [Formula: see text], which comprised [Formula: see text] agricultural wastes. According to the results, the [Formula: see text] model outperformed the [Formula: see text] and [Formula: see text] models. Moreover, an uncertainty analysis through the Monte Carlo simulation (MCS) method was applied to the prediction results. The growing demand for sustainable development and the crucial role of eco-friendly concrete in the construction industry can pave the way for further application of the developed models due to their superior robustness and high accuracy in future codes of practice.
推广在混凝土生产中使用农业废弃物/副产品可显著减少环境影响,并有助于可持续发展。已针对此类混凝土的抗压强度([公式:见原文])及性能开展了多项试验研究。利用以油棕壳([公式:见原文])作为轻骨料([公式:见原文])制成的229个混凝土样本的结果,来建立预测高强度轻骨料混凝土([公式:见原文])的[公式:见原文]的模型。为此,采用基因表达式编程([公式:见原文])、自适应神经模糊推理系统([公式:见原文])、人工神经网络([公式:见原文])和多元线性回归([公式:见原文])作为机器学习([公式:见原文])和回归方法。水胶比([公式:见原文])、普通硅酸盐水泥([公式:见原文])、粉煤灰([公式:见原文])、硅灰([公式:见原文])、细骨料([公式:见原文])、天然粗骨料([公式:见原文])、[公式:见原文]、高效减水剂([公式:见原文])含量以及试件龄期是所建立模型中使用的九个输入参数。结果表明,所有基于[公式:见原文]的模型都能有效预测包含[公式:见原文]农业废弃物的[公式:见原文]的[公式:见原文]。根据结果,[公式:见原文]模型的表现优于[公式:见原文]和[公式:见原文]模型。此外,通过蒙特卡洛模拟(MCS)方法对预测结果进行了不确定性分析。对可持续发展的需求不断增长以及环保型混凝土在建筑行业中的关键作用,因其具有卓越的稳健性和高精度,可为这些已建立的模型在未来实践规范中的进一步应用铺平道路。