Suppr超能文献

基于人工智能方法的硅灰基绿色混凝土力学性能预测建模:多层感知器神经网络、自适应神经模糊推理系统和基因表达式编程

Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP.

作者信息

Nafees Afnan, Javed Muhammad Faisal, Khan Sherbaz, Nazir Kashif, Farooq Furqan, Aslam Fahid, Musarat Muhammad Ali, Vatin Nikolai Ivanovich

机构信息

Department of Civil Engineering, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan.

Department of Civil Engineering, School of Engineering, Nazabayev University, Astana 010000, Kazakhstan.

出版信息

Materials (Basel). 2021 Dec 8;14(24):7531. doi: 10.3390/ma14247531.

Abstract

Silica fume (SF) is a mineral additive that is widely used in the construction industry when producing sustainable concrete. The integration of SF in concrete as a partial replacement for cement has several evident benefits, including reduced CO emissions, cost-effective concrete, increased durability, and mechanical qualities. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and cracking tensile strengths of silica fume concrete. Multilayer perceptron neural networks (MLPNN), adaptive neural fuzzy detection systems (ANFIS), and genetic programming are all used (GEP). From accessible literature data, a broad and accurate database of 283 compressive strengths and 149 split tensile strengths was created. The six most significant input parameters were cement, fine aggregate, coarse aggregate, water, superplasticizer, and silica fume. Different statistical measures were used to evaluate models, including mean absolute error, root mean square error, root mean squared log error and the coefficient of determination. Both machine learning models, MLPNN and ANFIS, produced acceptable results with high prediction accuracy. Statistical analysis revealed that the ANFIS model outperformed the MLPNN model in terms of compressive and tensile strength prediction. The GEP models outperformed all other models. The predicted values for compressive strength and splitting tensile strength for GEP models were consistent with experimental values, with an R value of 0.97 for compressive strength and 0.93 for splitting tensile strength. Furthermore, sensitivity tests revealed that cement and water are the determining parameters in the growth of compressive strength but have the least effect on splitting tensile strength. Cross-validation was used to avoid overfitting and to confirm the output of the generalized modelling technique. GEP develops an empirical expression for each outcome to forecast future databases' features to promote the usage of green concrete.

摘要

硅灰(SF)是一种矿物添加剂,在生产可持续混凝土时被广泛应用于建筑业。将硅灰作为水泥的部分替代品掺入混凝土中有诸多显著益处,包括减少二氧化碳排放、降低混凝土成本、提高耐久性以及改善机械性能。随着环境问题日益突出,开发预测性机器学习模型至关重要。因此,本研究旨在创建用于估算硅灰混凝土抗压强度和劈裂抗拉强度的建模工具。研究使用了多层感知器神经网络(MLPNN)、自适应神经模糊检测系统(ANFIS)和遗传编程(GEP)。根据可得的文献数据,创建了一个包含283个抗压强度和149个劈裂抗拉强度的广泛且准确的数据库。六个最重要的输入参数为水泥、细集料、粗集料、水、高效减水剂和硅灰。使用了不同的统计量来评估模型,包括平均绝对误差、均方根误差、均方根对数误差和决定系数。两种机器学习模型,即MLPNN和ANFIS,都产生了可接受的结果且预测准确率较高。统计分析表明,在抗压强度和抗拉强度预测方面,ANFIS模型优于MLPNN模型。GEP模型的表现优于所有其他模型。GEP模型抗压强度和劈裂抗拉强度的预测值与实验值一致,抗压强度的R值为0.97,劈裂抗拉强度的R值为0.93。此外,敏感性测试表明,水泥和水是抗压强度增长的决定性参数,但对劈裂抗拉强度的影响最小。使用交叉验证来避免过拟合,并确认广义建模技术的输出结果。GEP为每个结果开发了一个经验表达式,以预测未来数据库的特征,从而促进绿色混凝土的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e593/8703652/ffd17d59dbb2/materials-14-07531-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验