Culletta Giulia, Tutone Marco, Zappalà Maria, Almerico Anna Maria
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale F. Stagno D'Alcontres 31, 98168 Messina, Italy.
Curr Med Chem. 2023;30(2):128-163. doi: 10.2174/0929867329666220729151500.
The -SONH- group is of great significance in modern pharmaceutical use since, in sulfa-drugs, it is possible to introduce easily chemical modifications, and even small changes may lead to an improved version of an already existing drug.
This paper aims to describe updated information in the sulfonamide field with a particular focus on new mechanisms of action, especially if discovered by employing computational approaches.
Research articles that focused on the use of the sulfonamide moiety for the design, synthesis, and in vitro/in vivo tests of various diseases were collected from various search engines like PubMed, Science Direct, Google Scholar, and Scopus, using keywords like sulfonamide moiety, aryl/heteroary lsulfonamides, alkyl sulfonamides, in silico drug design, etc. Conclusion: The more relevant reports highlighting the prominent role of sulfonamide moiety in drug discovery have been critically analyzed. Sulfonamides can be considered as "molecular chimera", which are found to form hydrogen bonds as well as interact with unipolar environments within proteins. Therefore, based on the analysis reported herein, it is strongly foresight that new entities can be developed easily to improve the available machinery helpful in the fight against new and emerging diseases.
-SONH-基团在现代药物应用中具有重要意义,因为在磺胺类药物中可以轻松引入化学修饰,即使是微小的变化也可能产生已有药物的改进版本。
本文旨在描述磺胺类药物领域的最新信息,特别关注新的作用机制,尤其是通过计算方法发现的机制。
使用磺胺部分、芳基/杂芳基磺胺、烷基磺胺、计算机辅助药物设计等关键词,从PubMed、Science Direct、Google Scholar和Scopus等各种搜索引擎中收集专注于使用磺胺部分进行各种疾病的设计、合成及体外/体内测试的研究文章。结论:对更多突出磺胺部分在药物发现中重要作用的相关报告进行了批判性分析。磺胺类药物可被视为“分子嵌合体”,发现它们既能形成氢键,又能与蛋白质内的单极环境相互作用。因此,基于本文报道的分析,很有先见之明的是,可以轻松开发新的实体,以改进有助于对抗新出现疾病的现有机制。