CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
University of Chinese Academy of Sciences, Beijing, China.
Front Endocrinol (Lausanne). 2022 Jul 14;13:935016. doi: 10.3389/fendo.2022.935016. eCollection 2022.
AIMS/HYPOTHESIS: Large-scale prediabetes screening is still a challenge since fasting blood glucose and HbA as the long-standing, recommended analytes have only moderate diagnostic sensitivity, and the practicability of the oral glucose tolerance test for population-based strategies is limited. To tackle this issue and to identify reliable diagnostic patterns, we developed an innovative metabolomics-based strategy deviating from common concepts by employing urine instead of blood samples, searching for sex-specific biomarkers, and focusing on modified metabolites.
Non-targeted, modification group-assisted metabolomics by liquid chromatography-mass spectrometry (LC-MS) was applied to second morning urine samples of 340 individuals from a prediabetes cohort. Normal ( = 208) and impaired glucose-tolerant (IGT; = 132) individuals, matched for age and BMI, were randomly divided in discovery and validation cohorts. ReliefF, a feature selection algorithm, was used to extract sex-specific diagnostic patterns of modified metabolites for the detection of IGT. The diagnostic performance was compared with conventional screening parameters fasting plasma glucose (FPG), HbA, and fasting insulin.
Female- and male-specific diagnostic patterns were identified in urine. Only three biomarkers were identical in both. The patterns showed better AUC and diagnostic sensitivity for prediabetes screening of IGT than FPG, HbA, insulin, or a combination of FPG and HbA. The AUC of the male-specific pattern in the validation cohort was 0.889 with a diagnostic sensitivity of 92.6% and increased to an AUC of 0.977 in combination with HbA. In comparison, the AUCs of FPG, HbA, and insulin alone reached 0.573, 0.668, and 0.571, respectively. Validation of the diagnostic pattern of female subjects showed an AUC of 0.722, which still exceeded the AUCs of FPG, HbA, and insulin (0.595, 0.604, and 0.634, respectively). Modified metabolites in the urinary patterns include advanced glycation end products (pentosidine-glucuronide and glutamyl-lysine-sulfate) and microbiota-associated compounds (indoxyl sulfate and dihydroxyphenyl-gamma-valerolactone-glucuronide).
CONCLUSIONS/INTERPRETATION: Our results demonstrate that the sex-specific search for diagnostic metabolite biomarkers can be superior to common metabolomics strategies. The diagnostic performance for IGT detection was significantly better than routinely applied blood parameters. Together with recently developed fully automatic LC-MS systems, this opens up future perspectives for the application of sex-specific diagnostic patterns for prediabetes screening in urine.
目的/假设:由于空腹血糖和 HbA 作为长期以来被推荐的分析物,其诊断灵敏度仅为中等,并且口服葡萄糖耐量试验在人群策略中的实用性有限,因此大规模的糖尿病前期筛查仍然是一个挑战。为了解决这个问题并确定可靠的诊断模式,我们开发了一种创新的基于代谢组学的策略,该策略通过使用尿液而不是血液样本、寻找性别特异性生物标志物并专注于修饰代谢物,从而偏离了常见概念。
采用液相色谱-质谱联用(LC-MS)的非靶向、修饰基团辅助代谢组学方法对来自糖尿病前期队列的 340 名个体的次日清晨尿液样本进行分析。将年龄和 BMI 相匹配的正常(n = 208)和糖耐量受损(IGT;n = 132)个体随机分为发现和验证队列。采用 ReliefF 特征选择算法提取修饰代谢物的性别特异性诊断模式,用于检测 IGT。与常规筛选参数空腹血浆葡萄糖(FPG)、HbA 和空腹胰岛素相比,比较了诊断性能。
在尿液中鉴定出了女性和男性特异性的诊断模式。只有三个生物标志物在两者中完全相同。这些模式在 IGT 的糖尿病前期筛查中显示出更好的 AUC 和诊断灵敏度,优于 FPG、HbA、胰岛素或 FPG 和 HbA 的组合。验证队列中男性特异性模式的 AUC 为 0.889,诊断灵敏度为 92.6%,与 HbA 联合使用时 AUC 增加至 0.977。相比之下,FPG、HbA 和胰岛素的 AUC 分别达到 0.573、0.668 和 0.571。验证女性受试者诊断模式的 AUC 为 0.722,仍超过 FPG、HbA 和胰岛素的 AUC(0.595、0.604 和 0.634)。尿中模式的修饰代谢物包括晚期糖基化终产物(戊糖素-葡糖醛酸和谷氨酰-赖氨酸-硫酸)和微生物群相关化合物(吲哚硫酸和二羟基苯-γ-缬草酸-葡萄糖醛酸)。
结论/解释:我们的结果表明,针对诊断代谢物生物标志物的性别特异性搜索可以优于常见的代谢组学策略。IGT 检测的诊断性能明显优于常规应用的血液参数。结合最近开发的全自动 LC-MS 系统,这为在尿液中应用性别特异性诊断模式进行糖尿病前期筛查开辟了未来的前景。