Krieger Annika M, Sinha Vivek, Li Guanna, Pidko Evgeny A
Inorganic Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands.
Organometallics. 2022 Jul 25;41(14):1829-1835. doi: 10.1021/acs.organomet.2c00077. Epub 2022 Apr 15.
The choice of a solvent and the reaction conditions often defines the overall behavior of a homogeneous catalytic system by affecting the preferred reaction mechanism and thus the activity and selectivity of the catalytic process. Here, we explore the role of solvation in the mechanism of ketone reduction using a model representative of a bifunctional Mn-diamine catalyst through density functional theory calculations in a microsolvated environment by considering explicit solvent and fully solvated ab initio molecular dynamics simulations for the key elementary steps. Our computational analysis reveals the possibility of a Meerwein-Ponndorf-Verley (MPV) type mechanism in this system, which does not involve the participation of the N-H moiety and the formation of a transition-metal hydride species in ketone conversion. This path was not previously considered for Mn-based metal-ligand cooperative transfer hydrogenation homogeneous catalysis. The MPV mechanism is strongly facilitated by the solvent molecules present in the reaction environment and can potentially contribute to the catalytic performance of other related catalyst systems. Calculations indicate that, despite proceeding effectively in the second coordination sphere of the transition-metal center, the MPV reaction path retains the enantioselectivity preference induced by the presence of the small chiral ,'-dimethyl-1,2-cyclohexanediamine ligand within the catalytic Mn(I) complex.
溶剂的选择和反应条件通常通过影响优先反应机理,进而影响催化过程的活性和选择性,来决定均相催化体系的整体行为。在此,我们通过在微溶剂化环境中进行密度泛函理论计算,并考虑关键基元步骤的显式溶剂和完全溶剂化的从头算分子动力学模拟,利用双功能锰 - 二胺催化剂的模型代表来探索溶剂化在酮还原机理中的作用。我们的计算分析揭示了该体系中存在Meerwein - Ponndorf - Verley(MPV)型机理的可能性,该机理在酮转化过程中不涉及N - H部分的参与以及过渡金属氢化物物种的形成。此前基于锰的金属 - 配体协同转移氢化均相催化未考虑此路径。反应环境中存在的溶剂分子极大地促进了MPV机理,并且可能对其他相关催化剂体系的催化性能有贡献。计算表明,尽管MPV反应路径在过渡金属中心的第二配位层中有效进行,但在催化锰(I)配合物中,由于存在小的手性α,α'- 二甲基 - 1,2 - 环己二胺配体,该反应路径仍保留对映选择性偏好。