Chen Shiyang, Ghadami Amin, Epureanu Bogdan I
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
R Soc Open Sci. 2022 Jul 27;9(7):211346. doi: 10.1098/rsos.211346. eCollection 2022 Jul.
Recent studies demonstrate that trends in indicators extracted from measured time series can indicate an approach of an impending transition. Kendall's coefficient is often used to study the trend of statistics related to the critical slowing down phenomenon and other methods to forecast critical transitions. Because statistics are estimated from time series, the values of Kendall's are affected by parameters such as window size, sample rate and length of the time series, resulting in challenges and uncertainties in interpreting results. In this study, we examine the effects of different parameters on the distribution of the trend obtained from Kendall's , and provide insights into how to choose these parameters. We also suggest the use of the non-parametric Mann-Kendall test to evaluate the significance of a Kendall's value. The non-parametric test is computationally much faster compared with the traditional parametric auto-regressive, moving-average model test.
最近的研究表明,从测量时间序列中提取的指标趋势可以表明即将发生转变的趋向。肯德尔系数常被用于研究与临界减缓现象相关的统计趋势以及预测临界转变的其他方法。由于统计数据是从时间序列中估计出来的,肯德尔系数的值会受到窗口大小、采样率和时间序列长度等参数的影响,从而在解释结果时带来挑战和不确定性。在本研究中,我们研究了不同参数对肯德尔系数所得趋势分布的影响,并就如何选择这些参数提供见解。我们还建议使用非参数曼-肯德尔检验来评估肯德尔系数值的显著性。与传统的参数自回归、移动平均模型检验相比,非参数检验在计算上要快得多。